OFFSET
0,3
COMMENTS
In general, if e.g.f. satisfies: A(x) = exp( Integral(1 + x*A(x)^p) dx ), p>1, and the constant of integration is zero, then A(x) = (1/p + (p-1)/(exp(p*x)*p) - x)^(-1/p), and a(n) ~ n! * p^(n+1/p) / (Gamma(1/p) * n^(1-1/p)* (1+LambertW((p-1)*exp(-1)))^(n+2/p)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..385
FORMULA
E.g.f.: 4^(1/4)*exp(x)/(exp(4*x) - 4*exp(4*x)*x + 3)^(1/4).
a(n) ~ Gamma(3/4) * 2^(2*n+1/2) * n^(n-1/4) / (sqrt(Pi) * exp(n) * (1+LambertW(3/exp(1)))^(n+1/2)). - Vaclav Kotesovec, Jul 15 2014
MATHEMATICA
CoefficientList[Series[(1/p + (p-1)/(E^(p*x)*p) - x)^(-1/p) /. p->4, {x, 0, 20}], x] * Range[0, 20]!
PROG
(PARI) x='x+O('x^30); round(Vec(serlaplace(4^(1/4)*exp(x)/(exp(4*x) - 4*exp(4*x)*x + 3)^(1/4)))) \\ G. C. Greubel, Nov 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 15 2014
STATUS
approved