|
|
A123898
|
|
Expansion of e.g.f.: exp(2*(exp(exp(x/(1-x)) -1) -1)/(2 - exp(exp(x/(1-x) ) -1 ))).
|
|
1
|
|
|
1, 2, 16, 186, 2822, 52656, 1163546, 29664158, 856061120, 27560034858, 978535914122, 37963915297028, 1597135176454118, 72393848302855722, 3516235184103738928, 182148333985907278130, 10022182002655953791542, 583611259991958617165592, 35852747516653556289308282
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
MAPLE
|
seq(coeff(series(exp(2*(exp(exp(x/(1-x))-1)-1)/(2-exp(exp(x/(1-x))-1))), x, n+1)*n!, x, n), n = 0 .. 20); # G. C. Greubel, Aug 06 2019
|
|
MATHEMATICA
|
With[{m=20}, CoefficientList[Series[Exp[2*(Exp[Exp[x/(1-x)]-1]-1)/(2-Exp[Exp[x/(1-x)]-1])], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Aug 06 2019 *)
|
|
PROG
|
(PARI) my(x='x+O('x^20)); Vec(serlaplace( exp(2*(exp(exp(x/(1-x))-1)-1)/(2-exp(exp(x/(1-x))-1))) )) \\ G. C. Greubel, Aug 06 2019
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(2*(Exp(Exp(x/(1-x))-1)-1)/(2-Exp(Exp(x/(1-x))-1))) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 06 2019
(Sage) m = 20; T = taylor(exp(2*(exp(exp(x/(1-x))-1)-1)/(2-exp(exp(x/(1-x))-1))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Aug 06 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|