OFFSET
1,2
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = (2/3)*Series_Reversion( x - 3*x*A(x) ) + x/3.
(2) A( (3*A(x) - x)/2 ) = (A(x) - x) / (3*A(x) - x).
a(n) = Sum_{k=0..n-1} A291820(n, k) * 3^k * 2^(n-k-1).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 16*x^3 + 182*x^4 + 2524*x^5 + 39992*x^6 + 699520*x^7 + 13231034*x^8 + 266985280*x^9 + 5694001172*x^10 +...
such that A(x - 3*x*A(x)) = x - x*A(x).
RELATED SERIES.
A(x - 3*x*A(x)) = x - x^2 - 2*x^3 - 16*x^4 - 182*x^5 - 2524*x^6 - 39992*x^7 - 699520*x^8 +...
which equals x - x*A(x).
Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 24*x^3 + 273*x^4 + 3786*x^5 + 59988*x^6 + 1049280*x^7 + 19846551*x^8 +...
which equals (3/2)*A(x) - x/2.
A( (3*A(x) - x)/2 ) = x + 5*x^2 + 52*x^3 + 713*x^4 + 11458*x^5 + 205160*x^6 + 3984304*x^7 + 82576109*x^8 + 1807215616*x^9 + 41461917398*x^10 +...
which equals (A(x) - x) / (3*A(x) - x).
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = (2/3)*serreverse( x - 3*x*A +x*O(x^n) ) + x/3 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 02 2017
STATUS
approved