login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291816
G.f. A(x) satisfies: A(x - 3*x*A(x)) = x - x*A(x).
7
1, 2, 16, 182, 2524, 39992, 699520, 13231034, 266985280, 5694001172, 127481465536, 2981125793144, 72532301230672, 1830526849868000, 47802726801684544, 1289123410465365782, 35841130838977837348, 1025903099063974343984, 30195807234087904770952, 912951678159786641659796, 28327442752528049524839856, 901289532361030971832330544, 29382621186595702051011638128
OFFSET
1,2
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = (2/3)*Series_Reversion( x - 3*x*A(x) ) + x/3.
(2) A( (3*A(x) - x)/2 ) = (A(x) - x) / (3*A(x) - x).
a(n) = Sum_{k=0..n-1} A291820(n, k) * 3^k * 2^(n-k-1).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 16*x^3 + 182*x^4 + 2524*x^5 + 39992*x^6 + 699520*x^7 + 13231034*x^8 + 266985280*x^9 + 5694001172*x^10 +...
such that A(x - 3*x*A(x)) = x - x*A(x).
RELATED SERIES.
A(x - 3*x*A(x)) = x - x^2 - 2*x^3 - 16*x^4 - 182*x^5 - 2524*x^6 - 39992*x^7 - 699520*x^8 +...
which equals x - x*A(x).
Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 24*x^3 + 273*x^4 + 3786*x^5 + 59988*x^6 + 1049280*x^7 + 19846551*x^8 +...
which equals (3/2)*A(x) - x/2.
A( (3*A(x) - x)/2 ) = x + 5*x^2 + 52*x^3 + 713*x^4 + 11458*x^5 + 205160*x^6 + 3984304*x^7 + 82576109*x^8 + 1807215616*x^9 + 41461917398*x^10 +...
which equals (A(x) - x) / (3*A(x) - x).
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = (2/3)*serreverse( x - 3*x*A +x*O(x^n) ) + x/3 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 02 2017
STATUS
approved