login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011553 Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd. 2
0, 2, 16, 182, 2400, 35310, 562848, 9540674, 169777504, 3142665968, 60099912320, 1181283863632, 23767586624960, 487947659276790, 10195163202404160, 216335108170636650, 4653803620322450880, 101343766487960918460, 2231268469684932939360, 49614581272087698764820 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
LINKS
FORMULA
a(n) ~ 3^(3*n+7/2) / (64*Pi*n^4). - Vaclav Kotesovec, Sep 06 2014
Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - R. J. Mathar, Nov 22 2023
EXAMPLE
a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are:
+---+ +---+
|1 2| |1 2|
|3 5| |3 4|
|4 6| |5 6|
+---+ +---+ - Alois P. Heinz, Feb 28 2012
CROSSREFS
Cf. A123555.
Sequence in context: A371669 A363311 A052606 * A291816 A123898 A118644
KEYWORD
nonn
AUTHOR
giambruno(AT)ipamat.math.unipa.it
EXTENSIONS
Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
More terms and offset corrected by Alois P. Heinz, Feb 28 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 15:28 EDT 2024. Contains 375836 sequences. (Running on oeis4.)