login
A011553
Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd.
2
0, 2, 16, 182, 2400, 35310, 562848, 9540674, 169777504, 3142665968, 60099912320, 1181283863632, 23767586624960, 487947659276790, 10195163202404160, 216335108170636650, 4653803620322450880, 101343766487960918460, 2231268469684932939360, 49614581272087698764820
OFFSET
1,2
REFERENCES
For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
FORMULA
a(n) ~ 3^(3*n+7/2) / (64*Pi*n^4). - Vaclav Kotesovec, Sep 06 2014
Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - R. J. Mathar, Nov 22 2023
EXAMPLE
a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are:
+---+ +---+
|1 2| |1 2|
|3 5| |3 4|
|4 6| |5 6|
+---+ +---+ - Alois P. Heinz, Feb 28 2012
CROSSREFS
Cf. A123555.
Sequence in context: A371669 A363311 A052606 * A291816 A123898 A118644
KEYWORD
nonn
AUTHOR
giambruno(AT)ipamat.math.unipa.it
EXTENSIONS
Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
More terms and offset corrected by Alois P. Heinz, Feb 28 2012
STATUS
approved