|
|
A011553
|
|
Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd.
|
|
2
|
|
|
0, 2, 16, 182, 2400, 35310, 562848, 9540674, 169777504, 3142665968, 60099912320, 1181283863632, 23767586624960, 487947659276790, 10195163202404160, 216335108170636650, 4653803620322450880, 101343766487960918460, 2231268469684932939360, 49614581272087698764820
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
|
|
LINKS
|
|
|
FORMULA
|
Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - R. J. Mathar, Nov 22 2023
|
|
EXAMPLE
|
a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are:
+---+ +---+
|1 2| |1 2|
|3 5| |3 4|
|4 6| |5 6|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
giambruno(AT)ipamat.math.unipa.it
|
|
EXTENSIONS
|
Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
|
|
STATUS
|
approved
|
|
|
|