OFFSET
1,2
REFERENCES
For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
LINKS
FORMULA
a(n) ~ 3^(3*n+7/2) / (64*Pi*n^4). - Vaclav Kotesovec, Sep 06 2014
Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - R. J. Mathar, Nov 22 2023
EXAMPLE
a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are:
+---+ +---+
|1 2| |1 2|
|3 5| |3 4|
|4 6| |5 6|
+---+ +---+ - Alois P. Heinz, Feb 28 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
giambruno(AT)ipamat.math.unipa.it
EXTENSIONS
Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
More terms and offset corrected by Alois P. Heinz, Feb 28 2012
STATUS
approved