OFFSET
1,2
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = (4/3)*Series_Reversion( x - 3*x*A(x) ) - x/3.
(2) A( (3*A(x) + x)/4 ) = (A(x) - x) / (3*A(x) + x).
a(n) = Sum_{k=0..n-1} A291820(n, k) * 3^k * 4^(n-k-1).
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 40*x^3 + 580*x^4 + 10312*x^5 + 209752*x^6 + 4707952*x^7 + 114128308*x^8 + 2946787192*x^9 + 80268150808*x^10 +...
such that A(x - 3*x*A(x)) = x + x*A(x).
RELATED SERIES.
A(x - 3*x*A(x)) = x + x^2 + 4*x^3 + 40*x^4 + 580*x^5 + 10312*x^6 + 209752*x^7 + 4707952*x^8 +...
which equals x + x*A(x).
Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 30*x^3 + 435*x^4 + 7734*x^5 + 157314*x^6 + 3530964*x^7 + 85596231*x^8 +...
which equals (3/4)*A(x) + x/4.
A( (3*A(x) + x)/4 ) = x + 7*x^2 + 94*x^3 + 1651*x^4 + 33886*x^5 + 773458*x^6 + 19117780*x^7 + 503529979*x^8 + 13983485770*x^9 + 406470316978*x^10 +...
which equals (A(x) - x) / (3*A(x) + x).
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = (4/3)*serreverse( x - 3*x*A +x*O(x^n) ) - x/3 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 02 2017
STATUS
approved