login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272261
Number of one-to-one functions f from [n] to [2n] where f(x) may not be equal to x or to 2n+1-x.
0
1, 0, 4, 40, 576, 10528, 233920, 6124032, 184656640, 6302821888, 240245858304, 10115537336320, 466275700903936, 23354247194542080, 1262994451308888064, 73347095164693676032, 4552571878016243466240, 300763132329730843475968, 21071629550593224017182720
OFFSET
0,3
FORMULA
a(n) = Sum_{q=0..n} C(n,q) (-1)^q 2^q C(2n-q,n-q) (n-q)!.
a(n) = abs(A000806(n)) * 2^n.
E.g.f.: exp(-1+sqrt(1-4*x))/sqrt(1-4*x). - Benedict W. J. Irwin, Jul 14 2016
a(n) ~ 2^(2*n+1/2) * n^n / exp(n+1). - Vaclav Kotesovec, Jul 16 2016
Conjecture: Alternating sign g.f. is Sum_{k>=0} HermiteH[k,sqrt(x)]x^(k/2). - Benedict W. J. Irwin, Nov 30 2016
Conjecture D-finite with recurrence: a(n) + 2*(-2*n+1)*a(n-1) - 4*a(n-2)=0. - R. J. Mathar, Jan 27 2020
a(n) = KummerU(-n, -2*n, -2). - Peter Luschny, May 10 2022
MAPLE
a := n -> add(binomial(n, q)*(-1)^q*2^q*binomial(2*n-q, n-q)*(n-q)!, q=0..n): seq(a(n), n=0..20);
seq(simplify(KummerU(-n, -2*n, -2)), n = 0..18); # Peter Luschny, May 10 2022
MATHEMATICA
Table[CoefficientList[Series[E^(-1 + Sqrt[1 - 4 x])/Sqrt[1 - 4 x], {x, 0, 20}], x][[n]] (n - 1)!, {n, 1, 20}] (* Benedict W. J. Irwin, Jul 14 2016 *)
CROSSREFS
Cf. A000806.
Sequence in context: A276362 A302178 A379252 * A291817 A128573 A052675
KEYWORD
nonn
AUTHOR
Marko Riedel, Apr 23 2016
STATUS
approved