login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276362
G.f. satisfies: A(x - A(x)^2) = x + 3*A(x)^2.
19
1, 4, 40, 564, 9592, 184008, 3844624, 85700980, 2011283640, 49248127800, 1250064156912, 32736194249256, 881252194701616, 24317581366876880, 686300288661644960, 19774058901706750100, 580795172081872246232, 17368587281321383296184, 528294942152813411073968, 16329939570298980826852824, 512590568042639978453793744, 16329084800479729420462546352, 527621994750854274463428080608
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + 4 * A( 3*x/4 + A(x)/4 )^2.
(2) A(x) = -3*x + 4 * Series_Reversion(x - A(x)^2).
(3) 3*R(x) = -x + 4 * Series_Reversion(x + 3*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/3 - R(x)/3 ) ) = x/4 + 3*R(x)/4, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*4^(n-k-1).
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 40*x^3 + 564*x^4 + 9592*x^5 + 184008*x^6 + 3844624*x^7 + 85700980*x^8 + 2011283640*x^9 + 49248127800*x^10 + 1250064156912*x^11 + 32736194249256*x^12 +...
such that A(x - A(x)^2) = x + 3*A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - A(x)^2) = 3*x/4 + A(x)/4, which begins:
Series_Reversion(x - A(x)^2) = x + x^2 + 10*x^3 + 141*x^4 + 2398*x^5 + 46002*x^6 + 961156*x^7 + 21425245*x^8 + 502820910*x^9 + 12312031950*x^10 + 312516039228*x^11 + 8184048562314*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 4*x^2 - 8*x^3 - 84*x^4 - 1112*x^5 - 17352*x^6 - 303824*x^7 - 5791060*x^8 - 117898648*x^9 - 2531645240*x^10 - 56835852080*x^11 - 1325547044072*x^12 +...
then Series_Reversion(x + 3*A(x)^2) = x/4 + 3*R(x)/4.
MATHEMATICA
m = 24; A[_] = 0;
Do[A[x_] = x + 4 A[3x/4 + A[x]/4]^2 + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^2) - 3*F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 31 2016
STATUS
approved