login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276364
G.f. A(x) satisfies: A(x - A(x)^3) = x + A(x)^3, where A(x) = Sum_{n>=1} a(n)*x^(2*n-1).
13
1, 2, 18, 252, 4410, 88734, 1969668, 47104056, 1195658550, 31891944750, 887565934494, 25639389304560, 765765781572600, 23574635888791804, 746297727831434376, 24247096863466015152, 807243935471150901066, 27503153109167182217082, 957899411829034037383374, 34073454839478198669105444, 1236879534288183156526996062, 45788365378826408823663436974, 1727576456033196960394178300184
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + 2 * A( x/2 + A(x)/2 )^3.
(2) A(x) = -x + 2 * Series_Reversion(x - A(x)^3).
(3) R(x) = -x + 2 * Series_Reversion(x + A(x)^3), where R(A(x)) = x.
(4) R( ( x/2 - R(x)/2 )^(1/3) ) = x/2 + R(x)/2, where R(A(x)) = x.
EXAMPLE
G.f.: A(x) = x + 2*x^3 + 18*x^5 + 252*x^7 + 4410*x^9 + 88734*x^11 + 1969668*x^13 + 47104056*x^15 + 1195658550*x^17 + 31891944750*x^19 + 887565934494*x^21 + 25639389304560*x^23 + 765765781572600*x^25 +...
such that A(x - A(x)^3) = x + A(x)^3.
RELATED SERIES.
Note that Series_Reversion(x - A(x)^3) = x/2 + A(x)/2, which begins:
Series_Reversion(x - A(x)^2) = x + x^3 + 9*x^5 + 126*x^7 + 2205*x^9 + 44367*x^11 + 984834*x^13 + 23552028*x^15 + 597829275*x^17 + 15945972375*x^19 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 2*x^3 - 6*x^5 - 60*x^7 - 830*x^9 - 13950*x^11 - 267156*x^13 - 5629752*x^15 - 127807290*x^17 - 3082830030*x^19 - 78254901810*x^21 - 2076067799280*x^23 - 57266880966792*x^25 +...
then Series_Reversion(x + A(x)^3) = x/2 + R(x)/2.
Also, A(x) = x + 2 * A( x/2 + A(x)/2 )^3, where
A( x/2 + A(x)/2 ) = x + 3*x^3 + 33*x^5 + 528*x^7 + 10235*x^9 + 224001*x^11 + 5343738*x^13 + 136167888*x^15 + 3659113701*x^17 + 102800460825*x^19 + 3001057504233*x^21 + 90627712970220*x^23 + 2821487673544920*x^25 +...
and
A( x/2 + A(x)/2 )^3 = x^3 + 9*x^5 + 126*x^7 + 2205*x^9 + 44367*x^11 + 984834*x^13 + 23552028*x^15 + 597829275*x^17 + 15945972375*x^19 +...
which equals -x/2 + A(x)/2.
MATHEMATICA
nmin = 1; nmax = 60; sol = {b[1] -> 1}; nsol = Length[sol];
Do[A[x_] = Sum[b[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x - A[x]^3] - x - A[x]^3 + O[x]^(n+1), x][[nsol+1;; ]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nsol + 1, nmax}];
a[n_] := b[2n-1];
a /@ Range[nmin, (nmax+1)/2 // Floor] /. sol (* Jean-François Alcover, Nov 06 2019 *)
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, [0, 0]); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^3) - F^3, #A) ); A[2*n-1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A121429 A368466 A337775 * A109517 A213643 A143138
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 31 2016
STATUS
approved