login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276367
G.f.: A(x) = Sum_{n>=1} Product_{k=0..n-1} (x + k*A(x)).
1
1, 2, 8, 46, 322, 2564, 22482, 213358, 2170856, 23563266, 272229894, 3345403228, 43736868406, 608546129090, 9012054592672, 141977836757366, 2376612322575818, 42191783298374292, 792519258202255050, 15709695283993859430, 327743321824492243272, 7177487348025844367658, 164595689482728908058190, 3943617273778939651118764, 98517855256524601996722238, 2561403841975017528679295466, 69192589389178960801205055872
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..125 (terms 1..100 from Paul D. Hanna)
FORMULA
G.f.: A(x) = Sum_{n>=1} Sum_{k=1..n} |S1(n,k)| * x^k * A(x)^(n-k), where |S1(n,k)| = A000254(n,k) form the unsigned Stirling numbers of first kind.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2564*x^6 + 22482*x^7 + 213358*x^8 + 2170856*x^9 + 23563266*x^10 + 272229894*x^11 + 3345403228*x^12 + 43736868406*x^13 + 608546129090*x^14 + 9012054592672*x^15 + 141977836757366*x^16 +...
such that
A(x) = x + x*(x + A(x)) + x*(x + A(x))*(x + 2*A(x)) + x*(x + A(x))*(x + 2*A(x))*(x + 3*A(x)) + x*(x + A(x))*(x + 2*A(x))*(x + 3*A(x))*(x + 4*A(x)) + x*(x + A(x))*(x + 2*A(x))*(x + 3*A(x))*(x + 4*A(x))*(x + 5*A(x)) +...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = sum(m=1, 30, prod(k=0, m-1, x + k*A +x*O(x^n)))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x); for(i=0, n, A = sum(m=1, n, sum(k=1, m, abs( stirling(m, k, 1) )*x^k*(A + x*O(x^n))^(m-k) ) ) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A258315 A334498 A006664 * A326351 A276358 A337060
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 02 2016
STATUS
approved