login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = Sum_{n>=1} Product_{k=0..n-1} (x + k*A(x)).
1

%I #10 Dec 03 2017 04:55:45

%S 1,2,8,46,322,2564,22482,213358,2170856,23563266,272229894,3345403228,

%T 43736868406,608546129090,9012054592672,141977836757366,

%U 2376612322575818,42191783298374292,792519258202255050,15709695283993859430,327743321824492243272,7177487348025844367658,164595689482728908058190,3943617273778939651118764,98517855256524601996722238,2561403841975017528679295466,69192589389178960801205055872

%N G.f.: A(x) = Sum_{n>=1} Product_{k=0..n-1} (x + k*A(x)).

%H Vaclav Kotesovec, <a href="/A276367/b276367.txt">Table of n, a(n) for n = 1..125</a> (terms 1..100 from Paul D. Hanna)

%F G.f.: A(x) = Sum_{n>=1} Sum_{k=1..n} |S1(n,k)| * x^k * A(x)^(n-k), where |S1(n,k)| = A000254(n,k) form the unsigned Stirling numbers of first kind.

%e G.f.: A(x) = x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2564*x^6 + 22482*x^7 + 213358*x^8 + 2170856*x^9 + 23563266*x^10 + 272229894*x^11 + 3345403228*x^12 + 43736868406*x^13 + 608546129090*x^14 + 9012054592672*x^15 + 141977836757366*x^16 +...

%e such that

%e A(x) = x + x*(x + A(x)) + x*(x + A(x))*(x + 2*A(x)) + x*(x + A(x))*(x + 2*A(x))*(x + 3*A(x)) + x*(x + A(x))*(x + 2*A(x))*(x + 3*A(x))*(x + 4*A(x)) + x*(x + A(x))*(x + 2*A(x))*(x + 3*A(x))*(x + 4*A(x))*(x + 5*A(x)) +...

%o (PARI) {a(n) = my(A=x); for(i=1,n, A = sum(m=1,30, prod(k=0,m-1, x + k*A +x*O(x^n)))); polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) {a(n) = my(A=x); for(i=0,n, A = sum(m=1,n, sum(k=1,m, abs( stirling(m,k,1) )*x^k*(A + x*O(x^n))^(m-k) ) ) ); polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 02 2016