login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258315
G.f. C(x) satisfies: C(x) = 1 + 2*x*A(x)*B(x) where A(x) = B(x)*C(x) and B(x) = 1 + x*A(x)*C(x).
3
1, 2, 8, 46, 304, 2178, 16456, 129086, 1041248, 8582274, 71964232, 611954286, 5264786448, 45741886786, 400776143752, 3537136653566, 31417018218688, 280616550025218, 2518975669228936, 22712641808517166, 205612543320237808, 1868112977079278594, 17028815533533595080
OFFSET
0,2
FORMULA
G.f. C(x) satisfies:
(1) C(x) = 1 + 2*x*C(x)*(1 - C(x) + C(x)^2) + x^2*C(x)^4*(1 - C(x)).
(2) C(x) = (1/x)*Series_Reversion( x^2/(x + 2*Series_Reversion( x*(1-2*x^2)/(1+x) )^2) ).
(3) x = (sqrt(1 - 2*C(x) + 2*C(x)^2) - (1 - C(x) + C(x)^2)) / (C(x)^3*(1 - C(x))).
Other relations involving A=A(x), B=B(x), and C=C(x) are:
(a) B = (1 + x*A) / (1 - 2*x^2*A^2).
(b) C = (1 + 2*x*A) / (1 - 2*x^2*A^2).
(c) B = 1/(1 - x*C^2).
(d) C = 1/(1 - 2*x*B^2).
EXAMPLE
G.f.: C(x) = 1 + 2*x + 8*x^2 + 46*x^3 + 304*x^4 + 2178*x^5 + 16456*x^6 +...
where C(x) = 1 + 2*x*A(x)*B(x):
A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 641*x^4 + 4719*x^5 + 36335*x^6 +...
B(x) = 1 + x + 5*x^2 + 29*x^3 + 193*x^4 + 1389*x^5 + 10525*x^6 +...
Related series:
A(x)*B(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1089*x^4 + 8228*x^5 +...
A(x)*C(x) = 1 + 5*x + 29*x^2 + 193*x^3 + 1389*x^4 + 10525*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x, B=1+x, C=1+2*x); for(i=1, n, A = B*C +x*O(x^n); B = 1 + x*A*C + x*O(x^n); C = 1 + 2*x*A*B + x*O(x^n)); polcoeff(C, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(C=1); C = (1/x)*serreverse( x^2/(x + 2*serreverse( x*(1-2*x^2)/(1+x +x*O(x^n)) )^2) ); polcoeff(C, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A258313 (A(x)), A258314 (B(x)).
Sequence in context: A269006 A266507 A202081 * A334498 A006664 A276367
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 25 2015
STATUS
approved