login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258314
G.f. B(x) satisfies: B(x) = 1 + x*A(x)*C(x) where A(x) = B(x)*C(x) and C(x) = 1 + 2*x*A(x)*B(x).
3
1, 1, 5, 29, 193, 1389, 10525, 82729, 668321, 5514873, 46285861, 393889605, 3390819777, 29475696197, 258371636989, 2281190100625, 20268424498753, 181090741905393, 1625999443354501, 14664436054418477, 132781726001339713, 1206629736349162909, 11000943167309740701, 100596316305081808185
OFFSET
0,3
FORMULA
G.f. B(x) satisfies:
(1) B(x) = 1 + x*B(x)*(1 - 2*B(x))^2 + 4*x^2*B(x)^4*(1-B(x)).
(2) B(x) = sqrt( (1/x)*Series_Reversion( x*(1-2*x)^2 / (1-x + x^2*G(-x^2))^2 ) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers.
(3) x = ( sqrt(1 - 8*B(x) + 8*B(x)^2) - (1 - 2*B(x))^2 ) / (8*B(x)^3*(1-B(x))).
Other relations involving A=A(x), B=B(x), and C=C(x) are:
(a) B = (1 + x*A) / (1 - 2*x^2*A^2).
(b) C = (1 + 2*x*A) / (1 - 2*x^2*A^2).
(c) B = 1/(1 - x*C^2).
(d) C = 1/(1 - 2*x*B^2).
EXAMPLE
G.f.: B(x) = 1 + x + 5*x^2 + 29*x^3 + 193*x^4 + 1389*x^5 + 10525*x^6 +...
where B(x) = 1 + x*A(x)*C(x):
A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 641*x^4 + 4719*x^5 + 36335*x^6 +...
C(x) = 1 + 2*x + 8*x^2 + 46*x^3 + 304*x^4 + 2178*x^5 + 16456*x^6 +...
Related series:
A(x)*B(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1089*x^4 + 8228*x^5 +...
A(x)*C(x) = 1 + 5*x + 29*x^2 + 193*x^3 + 1389*x^4 + 10525*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x, B=1+x, C=1+2*x); for(i=1, n, A = B*C +x*O(x^n); B = 1 + x*A*C + x*O(x^n); C = 1 + 2*x*A*B + x*O(x^n)); polcoeff(B, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(B=1); B = sqrt( (1/x)*serreverse( x*(1-2*x)^2 / (1-x + x*serreverse(x/(1-x^2 +x*O(x^n))))^2 ) ); polcoeff(B, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A258313 (A(x)), A258315 (C(x)).
Sequence in context: A062191 A367240 A171267 * A225030 A188143 A095000
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 25 2015
STATUS
approved