login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258311
Row sums of A258310.
2
1, 1, 3, 7, 26, 86, 392, 1660, 9065, 46705, 297984, 1805926, 13186497, 91788477, 754481662, 5924676900, 54092804430, 472512732558, 4739696836485, 45540919862179, 497377234156959, 5208759709993591, 61475622078245542, 696384168181553136, 8825761698420052542
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} A258310(n,k).
MAPLE
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+b(x-1, y, false, k) +b(x-1, y+1, true, k)))
end:
A:= (n, k)-> b(n, 0, false, k):
T:= proc(n, k) option remember;
add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!
end:
a:= proc(n) option remember; add(T(n, k), k=0..n/2) end:
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0,
If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1]
+ b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
A[n_, k_] := b[n, 0, False, k];
T[n_, k_] := Sum[A[n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]/k!;
a[n_] := Sum[T[n, k], {k, 0, n/2}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A258310.
Sequence in context: A148740 A148741 A328280 * A184459 A215018 A069738
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 25 2015
STATUS
approved