This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258310 T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258309(n,i); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows. 4
 1, 1, 2, 1, 4, 3, 9, 14, 3, 21, 50, 15, 51, 204, 122, 15, 127, 784, 644, 105, 323, 3212, 4115, 1310, 105, 835, 13068, 22587, 9270, 945, 2188, 55475, 137503, 85109, 16764, 945, 5798, 238073, 787127, 614779, 149754, 10395 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Rows n = 0..200, flattened EXAMPLE Triangle T(n,k) begins: :    1; :    1; :    2,     1; :    4,     3; :    9,    14,      3; :   21,    50,     15; :   51,   204,    122,    15; :  127,   784,    644,   105; :  323,  3212,   4115,  1310,   105; :  835, 13068,  22587,  9270,   945; : 2188, 55475, 137503, 85109, 16764, 945; MAPLE b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,       `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)                   +b(x-1, y, false, k) +b(x-1, y+1, true, k)))     end: A:= (n, k)-> b(n, 0, false, k): T:= proc(n, k) option remember;        add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!     end: seq(seq(T(n, k), k=0..n/2), n=0..14); CROSSREFS Column k=0 gives A001006. T(2n,n) gives A001147. Row sums give A258311. Cf. A258307, A258309. Sequence in context: A262155 A181882 A109195 * A217927 A284709 A307365 Adjacent sequences:  A258307 A258308 A258309 * A258311 A258312 A258313 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, May 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 18:38 EDT 2019. Contains 328102 sequences. (Running on oeis4.)