OFFSET
0,3
COMMENTS
A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).
Row n contains 1 + floor(n/2) terms. Row sums yield the central trinomial coefficients (A002426).
Column k is the sum of columns 2k and 2k+1 of A089942. - Philippe Deléham, Nov 11 2008
FORMULA
EXAMPLE
T(3,1)=3 because we have hud, udh and uhd, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
1;
1;
2, 1;
4, 3;
9, 9, 1;
21, 25, 5;
51, 69, 20, 1;
MAPLE
M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-z-(1+t)*z^2*M): Gser:=simplify(series(G, z=0, 17)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 14 do seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 22 2005
STATUS
approved