login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109192
Number of Grand Motzkin paths of length n and having no hills (i.e., no ud's starting at level 0). (A Grand Motzkin path of length n is a path in the half-plane x >= 0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).)
1
1, 1, 2, 5, 13, 34, 91, 247, 678, 1877, 5233, 14674, 41349, 117001, 332260, 946527, 2703915, 7743268, 22223607, 63909987, 184121946, 531318553, 1535522513, 4443815554, 12876794147, 37356832679, 108494114718, 315415738025
OFFSET
0,3
COMMENTS
Column 0 of A109191.
FORMULA
G.f.: 1/(z^2 + sqrt(1 - 2*z - 3*z^2)).
D-finite with recurrence -9*(2 + n)*(3 + n)*a(n) + (-198 - 111*n - 15*n^2)*a(n+1) + (-78 - 102*n - 24*n^2)*a(n+2) + (-462 - 340*n - 56*n^2)*a(n+3) + (-186 - 106*n - 14*n^2)*a(n+4) + (1086 + 426*n + 42*n^2)*a(n+5) + (108 + 49*n + 5*n^2)*a(n+6) + (-432 - 139*n - 11*n^2)*a(n+7) + 2*(6 + n)*(8 + n)*a(n+8) = 0. - Benedict W. J. Irwin, Nov 02 2016
EXAMPLE
a(3)=5 because we have hhh,hdu,duh,uhd and dhu.
MAPLE
g:=1/(z^2+sqrt(1-2*z-3*z^2)): gser:=series(g, z=0, 33): 1, seq(coeff(gser, z^n), n=1..31);
MATHEMATICA
CoefficientList[Series[1/(z^2+Sqrt[1-2z-3z^2]), {z, 0, 30}], z] (* Benedict W. J. Irwin, Nov 02 2016 *)
CROSSREFS
Cf. A109191.
Sequence in context: A217896 A360709 A090827 * A192313 A193039 A062465
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 21 2005
STATUS
approved