OFFSET
0,3
COMMENTS
FORMULA
G.f.: 1/(1 - z + z^2 - tz^2 - 2z^2*M), where M = 1 + zM + z^2*M^2 = (1 - z - sqrt(1 - 2z - 3z^2))/(2z^2) is the g.f. of the Motzkin numbers (A001006).
EXAMPLE
T(3,1)=2 because we have hud and udh, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
1;
1;
2, 1;
5, 2;
13, 5, 1;
34, 14, 3;
91, 40, 9, 1;
MAPLE
M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-z+z^2-t*z^2-2*z^2*M): Gser:=simplify(series(G, z=0, 16)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 14 do seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)) od;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 21 2005
STATUS
approved