login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109191
Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k hills (i.e., ud's starting at level 0). (A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).).
1
1, 1, 2, 1, 5, 2, 13, 5, 1, 34, 14, 3, 91, 40, 9, 1, 247, 114, 28, 4, 678, 327, 87, 14, 1, 1877, 942, 267, 48, 5, 5233, 2723, 815, 161, 20, 1, 14674, 7892, 2478, 528, 75, 6, 41349, 22924, 7512, 1706, 270, 27, 1, 117001, 66712, 22718, 5452, 941, 110, 7, 332260
OFFSET
0,3
COMMENTS
Row n contains 1 + floor(n/2) terms.
Row sums yield the central trinomial coefficients (A002426).
T(n,0) = A109192(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A015518(n-1).
FORMULA
G.f.: 1/(1 - z + z^2 - tz^2 - 2z^2*M), where M = 1 + zM + z^2*M^2 = (1 - z - sqrt(1 - 2z - 3z^2))/(2z^2) is the g.f. of the Motzkin numbers (A001006).
EXAMPLE
T(3,1)=2 because we have hud and udh, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
1;
1;
2, 1;
5, 2;
13, 5, 1;
34, 14, 3;
91, 40, 9, 1;
MAPLE
M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-z+z^2-t*z^2-2*z^2*M): Gser:=simplify(series(G, z=0, 16)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 14 do seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)) od;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 21 2005
STATUS
approved