This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087123 a(n) = Fibonacci(n+1) - (-1)^n*Fibonacci(n). 3
 1, 2, 1, 5, 2, 13, 5, 34, 13, 89, 34, 233, 89, 610, 233, 1597, 610, 4181, 1597, 10946, 4181, 28657, 10946, 75025, 28657, 196418, 75025, 514229, 196418, 1346269, 514229, 3524578, 1346269, 9227465, 3524578, 24157817, 9227465, 63245986, 24157817 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform is Fibonacci(n) + Fibonacci(2n+1) = A087124(n). LINKS Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1). FORMULA a(2n) = Fibonacci(2n-1), a(2n+1) = Fibonacci(2n+3). G.f.: (1-x)*(1+3*x+x^2)/((1+x-x^2)*(1-x-x^2)). - Colin Barker, Apr 16 2012 a(n) = 3*a(n-2) - a(n-4) for n > 3. - Wesley Ivan Hurt, Oct 05 2017 MAPLE with(combinat): A087123:=n->fibonacci(n+1)-(-1)^n*fibonacci(n): seq(A087123(n), n=0..50); # Wesley Ivan Hurt, Oct 05 2017 MATHEMATICA MapIndexed[#2 - (-1)^#1*#3 & @@ {First@ #2 - 1, Last@ #1, First@ #1} &, Partition[Fibonacci@ Range[0, 36], 2, 1]] (* or *) CoefficientList[Series[(1 - x) (1 + 3 x + x^2)/((1 + x - x^2) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Oct 06 2017 *) PROG (PARI) a(n) = fibonacci(n+1)-(-1)^n*fibonacci(n); \\ Altug Alkan, Oct 06 2017 CROSSREFS Cf. A000045, A001519, A001906, A087124. Sequence in context: A113176 A113175 A109191 * A097131 A192263 A109738 Adjacent sequences:  A087120 A087121 A087122 * A087124 A087125 A087126 KEYWORD easy,nonn AUTHOR Paul Barry, Aug 15 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 04:08 EDT 2019. Contains 325290 sequences. (Running on oeis4.)