|
|
A087125
|
|
Indices n of hex numbers H(n) that are also triangular.
|
|
2
|
|
|
0, 5, 54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
Eric Weisstein's World of Mathematics, Hex Number
Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
|
|
FORMULA
|
G.f.: (-x^2+5*x)/((1-x)*(1-10*x+x^2)).
a(n) = 11*a(n-1)-11*a(n-2)+a(n-3) for n>2. - Colin Barker, Jun 23 2015
a(n) = (-4-(5-2*sqrt(6))^n*(-2+sqrt(6))+(2+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
|
|
MATHEMATICA
|
CoefficientList[Series[(-x^2+5*x)/((1-x)*(1-10*x+x^2)), {x, 0, 25}], x] (* G. C. Greubel, Nov 04 2017 *)
LinearRecurrence[{11, -11, 1}, {0, 5, 54}, 30] (* Harvey P. Dale, Jun 14 2022 *)
|
|
PROG
|
(PARI) concat(0, Vec(x*(x-5)/((x-1)*(x^2-10*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015
(Magma) [Round((-4-(5-2*Sqrt(6))^n*(-2+Sqrt(6)) + (2+Sqrt(6))*(5 + 2*Sqrt(6))^n)/8): n in [0..25]]; // G. C. Greubel, Nov 04 2017
|
|
CROSSREFS
|
Cf. A006244, A031138.
Sequence in context: A221544 A268882 A229298 * A110430 A110432 A215542
Adjacent sequences: A087122 A087123 A087124 * A087126 A087127 A087128
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Eric W. Weisstein, Aug 14 2003
|
|
STATUS
|
approved
|
|
|
|