login
A087124
a(n) = Fibonacci(n) + Fibonacci(2n+1).
3
1, 3, 6, 15, 37, 94, 241, 623, 1618, 4215, 11001, 28746, 75169, 196651, 514606, 1346879, 3525565, 9229062, 24160401, 63250167, 165586906, 433505383, 1134920881, 2971243730, 7778788417, 20365086099, 53316412566, 139584058863
OFFSET
0,2
COMMENTS
Binomial transform of A087123.
For n>=1, a(n) is the coefficient of x in the reduction by x^2->x+1 of the polynomial 1+x^n+x^(2n+1). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - Clark Kimberling, Jul 01 2011
FORMULA
G.f.: (1-2*x)*(1+x-x^2)/((1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 12 2012
MATHEMATICA
CoefficientList[Series[(1-2*x)*(1+x-x^2)/((1-3*x+x^2)*(1-x-x^2)), {x, 0, 1001}], x] (* Vincenzo Librandi, Mar 13 2012 *)
LinearRecurrence[{4, -3, -2, 1}, {1, 3, 6, 15}, 30] (* Harvey P. Dale, Aug 17 2024 *)
PROG
(Magma) [Fibonacci(n)+Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Mar 13 2012
(PARI) a(n)=fibonacci(n)+fibonacci(2*n+1) \\ Charles R Greathouse IV, Mar 13 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 15 2003
STATUS
approved