login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087124
a(n) = Fibonacci(n) + Fibonacci(2n+1).
3
1, 3, 6, 15, 37, 94, 241, 623, 1618, 4215, 11001, 28746, 75169, 196651, 514606, 1346879, 3525565, 9229062, 24160401, 63250167, 165586906, 433505383, 1134920881, 2971243730, 7778788417, 20365086099, 53316412566, 139584058863
OFFSET
0,2
COMMENTS
Binomial transform of A087123.
For n>=1, a(n) is the coefficient of x in the reduction by x^2->x+1 of the polynomial 1+x^n+x^(2n+1). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - Clark Kimberling, Jul 01 2011
FORMULA
G.f.: (1-2*x)*(1+x-x^2)/((1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 12 2012
MATHEMATICA
CoefficientList[Series[(1-2*x)*(1+x-x^2)/((1-3*x+x^2)*(1-x-x^2)), {x, 0, 1001}], x] (* Vincenzo Librandi, Mar 13 2012 *)
LinearRecurrence[{4, -3, -2, 1}, {1, 3, 6, 15}, 30] (* Harvey P. Dale, Aug 17 2024 *)
PROG
(Magma) [Fibonacci(n)+Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Mar 13 2012
(PARI) a(n)=fibonacci(n)+fibonacci(2*n+1) \\ Charles R Greathouse IV, Mar 13 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 15 2003
STATUS
approved