Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 24 2022 11:14:59
%S 1,1,2,5,13,34,91,247,678,1877,5233,14674,41349,117001,332260,946527,
%T 2703915,7743268,22223607,63909987,184121946,531318553,1535522513,
%U 4443815554,12876794147,37356832679,108494114718,315415738025
%N Number of Grand Motzkin paths of length n and having no hills (i.e., no ud's starting at level 0). (A Grand Motzkin path of length n is a path in the half-plane x >= 0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).)
%C Column 0 of A109191.
%F G.f.: 1/(z^2 + sqrt(1 - 2*z - 3*z^2)).
%F D-finite with recurrence -9*(2 + n)*(3 + n)*a(n) + (-198 - 111*n - 15*n^2)*a(n+1) + (-78 - 102*n - 24*n^2)*a(n+2) + (-462 - 340*n - 56*n^2)*a(n+3) + (-186 - 106*n - 14*n^2)*a(n+4) + (1086 + 426*n + 42*n^2)*a(n+5) + (108 + 49*n + 5*n^2)*a(n+6) + (-432 - 139*n - 11*n^2)*a(n+7) + 2*(6 + n)*(8 + n)*a(n+8) = 0. - _Benedict W. J. Irwin_, Nov 02 2016
%e a(3)=5 because we have hhh,hdu,duh,uhd and dhu.
%p g:=1/(z^2+sqrt(1-2*z-3*z^2)): gser:=series(g,z=0,33): 1,seq(coeff(gser,z^n),n=1..31);
%t CoefficientList[Series[1/(z^2+Sqrt[1-2z-3z^2]), {z, 0, 30}],z] (* _Benedict W. J. Irwin_, Nov 02 2016 *)
%Y Cf. A109191.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Jun 21 2005