The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089942 Inverse binomial matrix applied to A039599. 32
 1, 0, 1, 1, 1, 1, 1, 3, 2, 1, 3, 6, 6, 3, 1, 6, 15, 15, 10, 4, 1, 15, 36, 40, 29, 15, 5, 1, 36, 91, 105, 84, 49, 21, 6, 1, 91, 232, 280, 238, 154, 76, 28, 7, 1, 232, 603, 750, 672, 468, 258, 111, 36, 8, 1, 603, 1585, 2025, 1890, 1398, 837, 405, 155, 45, 9, 1, 1585, 4213, 5500 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Reverse of A071947 - related to lattice paths. First column is A005043. Triangle T(n,k), 0 <= k <= n, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Feb 27 2007 This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007 Riordan array (f(x),x*g(x)), where f(x)is the o.g.f. of A005043 and g(x)is the o.g.f. of A001006. - Philippe Deléham, Nov 22 2009 Riordan array ((1+x-sqrt(1-2x-3x^2))/(2x(1+x)), (1-x-sqrt(1-2x-3x^2))/(2x)). Inverse of Riordan array ((1+x)/(1+x+x^2),x/(1+x+x^2)). E.g.f. of column k is exp(x)*(Bessel_I(k,2x)-Bessel_I(k+1,2x)). Diagonal sums are A187306. Simultaneous equations using the first n rows solve for diagonal lengths of odd N = (2n+1) regular polygons, with constants c^0, c^1, c^2,...; where c = 1 + 2*cos( 2*Pi/N) = sin(3*Pi/N)/sin(Pi/N) = the third longest diagonal of N>5.  By way of example, take the first 4 rows relating to the 9-gon (nonagon), N=(2*4 + 1), with c = 1 + 2*cos(2*Pi/9) = 2.5320888.... The simultaneous equations are (1,0,0,0) = 1; (0,1,0,0) = c; (1,1,1,0) = c^2, (1,3,2,1) = c^3. The answers are 1, 2.532..., 2.879..., and 1.879...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. - Gary W. Adamson, Sep 07 2011 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened P. Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From N. J. A. Sloane, Sep 21 2012 E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122. D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320. Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths.  Eur. J. Comb. 39, 157-169 (2014) Table 2.2 FORMULA G.f.: (1+z-q)/[(1+z)(2z-t+tz+tq)], where q = sqrt(1-2z-3z^2). Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A005043(m+n). - Philippe Deléham, Mar 22 2007 Sum_{k=0..n} T(n,k)*(2k+1) = 3^n. - Philippe Deléham, Mar 22 2007 Sum_{k=0..n} T(n,k)*2^k = A112657(n). - Philippe Deléham, Apr 01 2007 T(n,2k) + T(n,2k+1) = A109195(n,k). - Philippe Deléham, Nov 11 2008 T(n,k) = GegenbauerC(n-k,-n+1,-1/2) - GegenbauerC(n-k-1,-n+1,-1/2) for 1 <= k <= n. - Peter Luschny, May 12 2016 EXAMPLE Triangle begins    1,    0,   1,    1,   1,   1,    1,   3,   2,   1,    3,   6,   6,   3,   1,    6,  15,  15,  10,   4,  1,   15,  36,  40,  29,  15,  5,  1,   36,  91, 105,  84,  49, 21,  6, 1,   91, 232, 280, 238, 154, 76, 28, 7, 1 Production matrix is   0, 1,   1, 1, 1,   0, 1, 1, 1,   0, 0, 1, 1, 1,   0, 0, 0, 1, 1, 1,   0, 0, 0, 0, 1, 1, 1,   0, 0, 0, 0, 0, 1, 1, 1,   0, 0, 0, 0, 0, 0, 1, 1, 1,   0, 0, 0, 0, 0, 0, 0, 1, 1, 1 MAPLE T:= (n, k) -> simplify(GegenbauerC(n-k, -n+1, -1/2)-GegenbauerC(n-k-1, -n+1, -1/2)): for n from 1 to 9 do seq(T(n, k), k=1..n) od; # Peter Luschny, May 12 2016 # Or by recurrence: T := proc(n, k) option remember; if n = k then 1 elif k < 0 or n < 0 or k > n then 0 elif k = 0 then T(n-1, 1) else T(n-1, k-1) + T(n-1, k) + T(n-1, k+1) fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 25 2021 MATHEMATICA T[n_, k_] := GegenbauerC[n - k, -n + 1, -1/2] - GegenbauerC[n - k - 1, -n + 1, -1/2]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Feb 28 2017 *) CROSSREFS Row sums give A002426 (central trinomial coefficients). Sequence in context: A335012 A158275 A147750 * A097409 A257556 A078268 Adjacent sequences:  A089939 A089940 A089941 * A089943 A089944 A089945 KEYWORD nonn,tabl AUTHOR Paul Barry, Nov 16 2003 EXTENSIONS Edited by Emeric Deutsch, Mar 04 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:40 EST 2021. Contains 349526 sequences. (Running on oeis4.)