The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089945 Main diagonal of array A089944, in which the n-th row is the n-th binomial transform of the natural numbers. 4
 1, 3, 15, 112, 1125, 14256, 218491, 3932160, 81310473, 1900000000, 49516901511, 1424099377152, 44804009850925, 1530735634132992, 56439656982421875, 2233785415175766016, 94459960699823921169, 4250383588380798812160, 202774313738037680879743 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of labeled trees on n+1 nodes with a designated node or edge. - Geoffrey Critzer, Mar 25 2017 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..386 FORMULA a(n) = (2*n+1)*(n+1)^(n-1). E.g.f.: (-LambertW(-x)/x)*(1-LambertW(-x))/(1+LambertW(-x)). MATHEMATICA nn = 30; T[z_] = -LambertW[-z]; Drop[Range[0, nn]! CoefficientList[Series[T[z] + T[z]^2/2, {z, 0, nn}], z], 1] (* Geoffrey Critzer, Mar 25 2017 *) Table[(2 n + 1) (n + 1)^(n - 1), {n, 0, 18}] (* Michael De Vlieger, Mar 25 2017 *) PROG (PARI) a(n)=if(n<0, 0, (2*n+1)*(n+1)^(n-1)) (MAGMA) [(2*n+1)*(n+1)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 16 2017 CROSSREFS Cf. A089944, A089946, A245348. Sequence in context: A001063 A130168 A267083 * A135083 A323772 A058104 Adjacent sequences:  A089942 A089943 A089944 * A089946 A089947 A089948 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 23 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)