OFFSET
0,2
COMMENTS
a(n) is the number of labeled trees on n+1 nodes with a designated node or edge. - Geoffrey Critzer, Mar 25 2017
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..386
FORMULA
a(n) = (2*n+1)*(n+1)^(n-1).
E.g.f.: (-LambertW(-x)/x)*(1-LambertW(-x))/(1+LambertW(-x)).
MATHEMATICA
nn = 30; T[z_] = -LambertW[-z]; Drop[Range[0, nn]! CoefficientList[Series[T[z] + T[z]^2/2, {z, 0, nn}], z], 1] (* Geoffrey Critzer, Mar 25 2017 *)
Table[(2 n + 1) (n + 1)^(n - 1), {n, 0, 18}] (* Michael De Vlieger, Mar 25 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, (2*n+1)*(n+1)^(n-1))
(Magma) [(2*n+1)*(n+1)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 16 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2003
STATUS
approved