login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245348
Number T(n,k) of endofunctions f on [n] that are self-inverse on [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5
1, 1, 1, 4, 3, 2, 27, 15, 8, 4, 256, 112, 50, 22, 10, 3125, 1125, 430, 166, 66, 26, 46656, 14256, 4752, 1626, 576, 206, 76, 823543, 218491, 64484, 19768, 6310, 2054, 688, 232, 16777216, 3932160, 1040384, 288512, 83736, 24952, 7660, 2388, 764
OFFSET
0,4
COMMENTS
T(n,k) counts endofunctions f:{1,...,n}-> {1,...,n} with f(f(i))=i for all i in {1,...,k}.
LINKS
FORMULA
T(n,k) = Sum_{i=0..min(k,n-k)} C(n-k,i)*C(k,i)*i!*A000085(k-i)*n^(n-k-i).
EXAMPLE
T(3,1) = 15: (1,1,1), (2,1,1), (3,1,1), (1,2,1), (3,2,1), (1,3,1), (3,3,1), (1,1,2), (2,1,2), (1,2,2), (1,3,2), (1,1,3), (2,1,3), (1,2,3), (1,3,3).
T(3,2) = 8: (2,1,1), (1,2,1), (3,2,1), (2,1,2), (1,2,2), (1,3,2), (2,1,3), (1,2,3).
T(3,3) = 4: (3,2,1), (1,3,2), (2,1,3), (1,2,3).
Triangle T(n,k) begins:
0 : 1;
1 : 1, 1;
2 : 4, 3, 2;
3 : 27, 15, 8, 4;
4 : 256, 112, 50, 22, 10;
5 : 3125, 1125, 430, 166, 66, 26;
6 : 46656, 14256, 4752, 1626, 576, 206, 76;
7 : 823543, 218491, 64484, 19768, 6310, 2054, 688, 232;
...
MAPLE
g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
T:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
g(k-i)*n^(n-k-i), i=0..min(k, n-k)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
g[n_] := g[n] = If[n<2, 1, g[n-1] + (n-1)*g[n-2]]; T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
CROSSREFS
Columns k=0-1 give: A000312, A089945(n-1) for n>0.
Main diagonal gives A000085.
T(2n,n) gives A245141.
Sequence in context: A330778 A061312 A019130 * A174551 A349811 A239799
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 18 2014
STATUS
approved