login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245141
Number of endofunctions f on [2n] that are self-inverse on [n].
3
1, 3, 50, 1626, 83736, 6026120, 571350096, 67996818960, 9862902275456, 1700092943088768, 342087177215788800, 79115601821198404352, 20779757607847901690880, 6133520505473954148381696, 2017134796016735182500521984, 733523863838078950241395968000
OFFSET
0,2
COMMENTS
a(n) counts endofunctions f:{1,...,2n}-> {1,...,2n} with f(f(i))=i for all i in {1,...,n}.
LINKS
FORMULA
a(n) = Sum_{i=0..n} C(n,i)^2 * i! * A000085(n-i) * (2*n)^(n-i).
a(n) = A245348(2n,n).
EXAMPLE
a(1) = 3: (1,1), (1,2), (2,1).
MAPLE
g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
a:= n-> add(binomial(n, i)^2*i!*g(n-i)*(2*n)^(n-i), i=0..n):
seq(a(n), n=0..20);
MATHEMATICA
Join[{1}, Table[n! * Sum[Binomial[n, k] * 2^k * n^k* Sum[1/((k - 2*j)!*2^j*j!), {j, 0, Floor[k/2]}], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Dec 05 2021 *)
CROSSREFS
Column k=2 of A246070.
Sequence in context: A246283 A326250 A308331 * A203239 A279970 A217767
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2014
STATUS
approved