login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203239
Odd numbered terms of the sequence whose n-th term is the (n-1)-st elementary symmetric function of (i, 2i, 3i, ..., ni), where i=sqrt(-1).
2
3, -50, 1764, -109584, 10628640, -1486442880, 283465647360, -70734282393600, 22376988058521600, -8752948036761600000, 4148476779335454720000, -2342787216398718566400000, 1554454559147562279567360000
OFFSET
1,1
FORMULA
a(n) = (-1)^(n+1)*(2*n)!*Sum_{i=1..2n} 1/i. - Arkadiusz Wesolowski, Mar 25 2013
From Anton Zakharov, Oct 26 2016: (Start)
a(n) = (-1)^(n+1)*Sum_{k=1..n} A094310(2n,k).
(-1)^(n+1)*a(n) = A000254(2n) (signed bisection of A000254). (End)
EXAMPLE
The first 10 terms of the "full sequence" are as follows:
1, 3i, -11, -50i, 274, 1764i, -13068, -109584i, 1026576, 10628640i;
Abbreviate "elementary symmetric function" as esf. Then, starting with {i, 2i, 3i, 4i, ...}:
0th esf of {i}: 1
1st esf of {i, 2i}: i+2i = 3i
2nd esf of {i, 2i, 3i}: -2-3-6 = -11.
For the alternating terms 3i, -50i, ..., see A203240.
MATHEMATICA
f[k_] := k*I; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 22}]
Table[-I*a[2 n], {n, 1, 22}] (* A203239 *)
Table[a[2 n - 1], {n, 1, 22}] (* A203240 *)
Table[(-1)^(n + 1)*(2*n)!*HarmonicNumber[2*n], {n, 13}] (* Arkadiusz Wesolowski, Mar 25 2013 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, Dec 30 2011
STATUS
approved