login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185157
G.f. A(x) = sum(n>0, a(n)*x^n/(2*n-1)!) is the inverse function to x*Bernoulli(x).
1
1, 3, 50, 2100, 166824, 21538440, 4115105280, 1091804313600, 384202115256960, 173201547619900800, 97349279409046828800, 66747386996603337024000, 54838533307770850530816000, 53185913922332495626882560000
OFFSET
1,2
COMMENTS
r(n)=sum(A191578(n,k)*k!/(n!*(n-k)!)*a(k)/(2*k-1)!,k,1,n)=0, n>1. r(1)=1.
The central column of the Worpitzky triangle, a(n) = A028246(2n, n). Peter Luschny, Jul 17 2012
LINKS
FORMULA
a(n) = (n-1)!*stirling2(2*n-1,n).
a(n) = (1/n)*sum{i=0..n}(-1)^(n-i)*binomial(n,i)*i^(2*n-1) - Peter Luschny, Jul 17 2012
O.g.f.: Sum_{n>=1} n^(2*n-2)*x^n/(1 + n^2*x)^n = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Jan 06 2018
MATHEMATICA
a[n_] := (n-1)!*StirlingS2[2*n-1, n]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Feb 21 2013, from 1st formula *)
PROG
(Maxima) a(n)=(n-1)!*stirling2(2*n-1, n);
(Sage)
def A185157(n) :
return (1/n)*add((-1)^(n-i)*binomial(n, i)*i^(2*n-1) for i in (0..n))
[A185157(n) for n in (1..14)] # Peter Luschny, Jul 17 2012
CROSSREFS
Sequence in context: A203239 A279970 A217767 * A078674 A071094 A144987
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jan 23 2012
STATUS
approved