login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203242 Second elementary symmetric function of the first n terms of (1, 3, 7, 15, 31, ...). 2
3, 31, 196, 1002, 4593, 19833, 82818, 339340, 1375639, 5543331, 22263216, 89249214, 357422541, 1430607325, 5724394990, 22901773824, 91616007699, 366482904615, 1465971463740, 5863969740370, 23456055121513, 93824589584001 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Robert Israel, Table of n, a(n) for n = 2..1659

FORMULA

Conjecture: (-103*n+258)*a(n) + (881*n-2116)*a(n-1) + 6*(-427*n+960)*a(n-2) + 4*(766*n-1545)*a(n-3) + 16*(-80*n+121)*a(n-4) = 0. - R. J. Mathar, Oct 15 2013

Empirical g.f.: -x^2*(4*x^2 + 2*x - 3)/((x - 1)^3*(2*x - 1)^2*(4*x - 1)). - Colin Barker, Aug 15 2014

From Robert Israel, Feb 01 2019: (Start)

Conjecture and empirical g.f. verified.

a(n) = 4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3. (End)

MAPLE

seq(4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3, n=2..100); # Robert Israel, Feb 01 2019

MATHEMATICA

f[k_] := 2^k - 1; t[n_] := Table[f[k], {k, 1, n}]

a[n_] := SymmetricPolynomial[2, t[n]]

Table[a[n], {n, 2, 32}] (* A203242 *)

CROSSREFS

Cf. A203241.

Sequence in context: A060416 A333368 A060425 * A121099 A197746 A342260

Adjacent sequences: A203239 A203240 A203241 * A203243 A203244 A203245

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Dec 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 04:37 EST 2022. Contains 358431 sequences. (Running on oeis4.)