This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094310 Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k. 9
 1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sum of the rows gives A000254 (Stirling numbers of first kind). The first column and the leading diagonal are factorials given by A000142 with offsets of 0 and 1. T(n,k) is the number of length k cycles in all permutations of {1..n}. T(n,k)*k = n*n! = A001563(n). Second diagonal gives A001048(n). - Anton Zakharov Oct 24 2016 LINKS Alois P. Heinz, Rows n = 1..141, flattened FORMULA E.g.f. for column k is x^k/(k*(1-x)). EXAMPLE 1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040 ... MATHEMATICA Table[Table[n!/k, {k, n}], {n, 10}] Table[n!/Range[n], {n, 10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *) CROSSREFS Cf. A000142, A000254, A001563, A061579, A094307. Cf. A129825. - Johannes W. Meijer, Jun 18 2009 Cf. A001710, A002301, A110468, A133799. Sequence in context: A125901 A094307 A097905 * A165908 A121281 A232467 Adjacent sequences:  A094307 A094308 A094309 * A094311 A094312 A094313 KEYWORD nonn,tabl AUTHOR Amarnath Murthy, Apr 29 2004 EXTENSIONS More terms from Philippe Deléham, Jun 11 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 04:40 EST 2019. Contains 319370 sequences. (Running on oeis4.)