OFFSET
0,6
COMMENTS
Define "conjugated" Bernoulli numbers G(n) via G(0)=0, G(1)=B(0)=1, G(2)=-B(1)=1/2, G(n+1)=B(n), where B(n)=A027641(n)/A027642(n).
The sequence is then defined by a(n) = n!*G(n).
The first differences are 1, 0, 0, -1, -4, 4, 120, -120, -12096, ...
The 2nd differences are -1, 0, -1, -3, 8, 116, -240, -11976, 24192, 3011904, ...
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
FORMULA
From Johannes W. Meijer, Jun 18 2009: (Start)
a(n) = Sum_{k=1..n} (-1)^(k+1)*(n!/k)*S2(n, k)*(k-1)!.
a(n) = A129814(n-1) for n > 2. - Georg Fischer, Oct 07 2018
MAPLE
A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
MATHEMATICA
a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
PROG
(Magma)
[n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
(SageMath)
[(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Paul Curtz, Jun 03 2007
EXTENSIONS
Edited by R. J. Mathar, May 21 2009
STATUS
approved