OFFSET
2,2
MAPLE
nmax:=21; for n from 0 to nmax do A008955(n, 0):=1 end do: for n from 0 to nmax do A008955(n, n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m):= A008955(n-1, m-1)*n^2+A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1):=1 od: for n from 1 to nmax do A028246(n, n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m):=m*A028246(n-1, m)+(m-1)*A028246(n-1, m-1) od: od: for n from 2 to nmax do a(n):=sum(((-1)^k/((k+1)!*(k+2)!)) *(n!)*A028246(n, k+2)* A008955(k+1, k), k=0..n-2) od: seq(a(n), n=2..nmax);
CROSSREFS
Equals third left hand column of A161739 (RSEG2 triangle).
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
KEYWORD
easy,sign
AUTHOR
Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009
STATUS
approved