

A138989


a(n) = Frobenius number for 3 successive primes = F[p(n),p(n+1),p(n+2)].


11



1, 4, 13, 30, 53, 80, 117, 131, 194, 286, 293, 520, 613, 522, 1310, 858, 1001, 929, 1610, 1418, 1322, 1499, 1421, 2941, 3300, 3533, 3710, 3957, 2065, 2241, 3685, 4595, 3697, 3930, 5956, 12074, 5509, 5874, 14690, 7968, 6084, 6373, 12413, 12740, 6694, 21878
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For Frobenius numbers for 2 successive primes see A037165
For Frobenius numbers for 3 successive primes see A138989
For Frobenius numbers for 4 successive primes see A138990
For Frobenius numbers for 5 successive primes see A138991
For Frobenius numbers for 6 successive primes see A138992
For Frobenius numbers for 7 successive primes see A138993
For Frobenius numbers for 8 successive primes see A138994


LINKS

Table of n, a(n) for n=1..46.


EXAMPLE

a(3)=13 because 13 is the biggest number k such that equation 5*x_1+7*x_2+11*x_3 = k has no solution for any nonnegative x_i (in other words for every k>13 there exists one or more solutions)


MATHEMATICA

Table[FrobeniusNumber[{Prime[n], Prime[n + 1], Prime[n + 2}], {n, 1, 100}]
FrobeniusNumber/@Partition[Prime[Range[50]], 3, 1] (* Harvey P. Dale, Dec 01 2015 *)


CROSSREFS

Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993.
Sequence in context: A264536 A161742 A041301 * A254830 A071400 A206806
Adjacent sequences: A138986 A138987 A138988 * A138990 A138991 A138992


KEYWORD

nonn


AUTHOR

Artur Jasinski, Apr 05 2008


STATUS

approved



