|
|
A079326
|
|
a(n) = the largest number m such that if m monominoes are removed from an n X n square then an L-tromino must remain.
|
|
19
|
|
|
1, 2, 7, 9, 17, 20, 31, 35, 49, 54, 71, 77, 97, 104, 127, 135, 161, 170, 199, 209, 241, 252, 287, 299, 337, 350, 391, 405, 449, 464, 511, 527, 577, 594, 647, 665, 721, 740, 799, 819, 881, 902, 967, 989, 1057, 1080, 1151, 1175, 1249, 1274, 1351, 1377, 1457
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n^2)/2 - 1 (n even), (n^2-n)/2 - 1 (n odd).
G.f.: x^2*(1+x+3*x^2-x^4)/((1+x)^2*(1-x)^3).
a(n) = n*(2*n+(-1)^n-1)/4 - 1.
|
|
EXAMPLE
|
a(3)=2 because if a middle row of 3 monominoes are removed from the 3 X 3, no L remains.
|
|
MATHEMATICA
|
Table[FrobeniusNumber[{a, a + 1, a + 2}], {a, 2, 54}] (* Zak Seidov, Jan 08 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mambetov Timur (timur_teufel(AT)mail.ru), Feb 13 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|