login
A079326
a(n) = the largest number m such that if m monominoes are removed from an n X n square then an L-tromino must remain.
19
1, 2, 7, 9, 17, 20, 31, 35, 49, 54, 71, 77, 97, 104, 127, 135, 161, 170, 199, 209, 241, 252, 287, 299, 337, 350, 391, 405, 449, 464, 511, 527, 577, 594, 647, 665, 721, 740, 799, 819, 881, 902, 967, 989, 1057, 1080, 1151, 1175, 1249, 1274, 1351, 1377, 1457
OFFSET
2,2
FORMULA
a(n) = (n^2)/2 - 1 (n even), (n^2-n)/2 - 1 (n odd).
a(n) = A204557(n-1) / (n-1). - Reinhard Zumkeller, Jan 18 2012
From Bruno Berselli, Jan 18 2011: (Start)
G.f.: x^2*(1+x+3*x^2-x^4)/((1+x)^2*(1-x)^3).
a(n) = n*(2*n+(-1)^n-1)/4 - 1.
a(n) = A105638(-n+2). (End)
EXAMPLE
a(3)=2 because if a middle row of 3 monominoes are removed from the 3 X 3, no L remains.
MATHEMATICA
Table[FrobeniusNumber[{a, a + 1, a + 2}], {a, 2, 54}] (* Zak Seidov, Jan 08 2015 *)
CROSSREFS
Frobenius number for k successive numbers: A028387 (k=2), this sequence (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).
Sequence in context: A042807 A005988 A199537 * A055673 A177737 A336770
KEYWORD
nonn,easy
AUTHOR
Mambetov Timur (timur_teufel(AT)mail.ru), Feb 13 2003
EXTENSIONS
Edited by Don Reble, May 28 2007
STATUS
approved