|
|
A138984
|
|
a(n) = Frobenius number for 4 successive numbers = F(n+1,n+2,n+3,n+4).
|
|
7
|
|
|
1, 2, 3, 9, 11, 13, 23, 26, 29, 43, 47, 51, 69, 74, 79, 101, 107, 113, 139, 146, 153, 183, 191, 199, 233, 242, 251, 289, 299, 309, 351, 362, 373, 419, 431, 443, 493, 506, 519, 573, 587, 601, 659, 674, 689, 751, 767, 783, 849, 866, 883, 953, 971, 989, 1063, 1082
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For Frobenius numbers for 2 successive numbers see A028387.
For Frobenius numbers for 3 successive numbers see A079326.
For Frobenius numbers for 4 successive numbers see A138984.
For Frobenius numbers for 5 successive numbers see A138985.
For Frobenius numbers for 6 successive numbers see A138986.
For Frobenius numbers for 7 successive numbers see A138987.
For Frobenius numbers for 8 successive numbers see A138988.
|
|
LINKS
|
Table of n, a(n) for n=1..56.
Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
|
|
FORMULA
|
G.f.: x*(x^6-4*x^3-x^2-x-1) / ((x-1)^3*(x^2+x+1)^2). [Colin Barker, Dec 13 2012]
|
|
EXAMPLE
|
a(4) = 9 because 9 is the biggest number k such that equation: 5*x_1+6*x_2+7*x_3+9*x_4 = k has no solution for any nonnegative x_i (in other words for every k>9 there exists one or more solutions)
|
|
MATHEMATICA
|
Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}]
|
|
CROSSREFS
|
Cf. A028387, A079326, A138985, A138986, A138987, A138988.
Sequence in context: A140222 A272537 A121557 * A110772 A074338 A111319
Adjacent sequences: A138981 A138982 A138983 * A138985 A138986 A138987
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Artur Jasinski, Apr 05 2008
|
|
STATUS
|
approved
|
|
|
|