login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138983
a(n) = (n+1)-th term of the (n+1)-th inverse binomial transform of this sequence for n>=0.
0
1, 2, 6, 33, 241, 2391, 30903, 499000, 9804344, 230270387, 6364661087, 204142831017, 7508991442137, 313657014920304, 14753881974826196, 775751424297987671, 45294591976852153687, 2919681469388967044215
OFFSET
0,2
FORMULA
O.g.f. satisfies: a(n-1) = [x^n] A( x/(1+n*x) )/(1+n*x) for n>=1 with a(0)=1.
EXAMPLE
If the successive inverse binomial transforms are placed in a table,
then we see that the diagonal consists of this sequence shift right:
n=0:[(1),2,6,33,241,2391,30903,499000,9804344,230270387,...];
n=1:[1, (1),3,20,138,1465,19591,325497,6558907,157672912,...];
n=2:[1,0, (2),13,73,949,12511,214938,4430056,108883779,...];
n=3:[1,-1,3, (6),34,693,7683,145147,3012155,75811514,...];
n=4:[1,-2,6,-7, (33),547,3967,104868,2029432,53365459,...];
n=5:[1,-3,11,-32,106, (241),1423,87045,1273819,38606532,...];
n=6:[1,-4,18,-75,313,-735, (2391),77062,613352,30170147,...];
n=7:[1,-5,27,-142,738,-3251,13291, (30903),131611,27084334,...];
n=8:[1,-6,38,-239,1489,-8657,47143,-161808, (499000),25380339,...];
n=9:[1,-7,51,-372,2698,-18903,126807,-734927,3716987, (9804344),...].
PROG
(PARI) {a(n)=local(A=[1]); for(k=1, n, A=concat(A, 0); A[k+1]=A[k]-polcoeff(subst(Ser(A), x, x/(1+k*x+x*O(x^k)))/(1+k*x), k)); A[n+1]}
CROSSREFS
Sequence in context: A280769 A127114 A138909 * A121774 A209238 A053042
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 05 2008
STATUS
approved