login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209238
G.f.: A(x) = Sum_{n>=0} x^n * A(n*x) / A(x)^n.
0
1, 1, 1, 1, 2, 6, 33, 261, 3125, 54281, 1360227, 49213679, 2551724168, 189734190172, 20202532257783, 3077389342754387, 670727373110373402, 209089605110085626174, 93228754516671937710239, 59465333534426105454885059, 54262238803939167296498684986
OFFSET
0,5
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 33*x^6 + 261*x^7 + 3125*x^8 +...
The table of coefficients of x^k in A(n*x)/A(x)^n begin:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 0, 1, 2, 18, 128, 1704, 28908, 729461, 26121996, ...];
n=3: [1, 0, 3, 8, 102, 1032, 20052, 502104, 18852177, ...];
n=4: [1, 0, 6, 20, 333, 4404, 113292, 3769344, 188468286, ...];
n=5: [1, 0, 10, 40, 825, 13504, 433060, 17986560, 1123704270, ...];
n=6: [1, 0, 15, 70, 1725, 33684, 1294525, 64474290, ...];
n=7: [1, 0, 21, 112, 3213, 72912, 3266599, 189725472, ...];
n=8: [1, 0, 28, 168, 5502, 142296, 7282212, 483225336, ...];
n=9: [1, 0, 36, 240, 8838, 256608, 14768652, 1102246128, ...]; ...
This sequence equals the antidiagonal sums of the above table.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sum(k=0, n, x^k*subst(A, x, k*x +x*O(x^n))/A^(k)) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A125282.
Sequence in context: A138909 A138983 A121774 * A053042 A174432 A012874
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 27 2013
STATUS
approved