Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jan 27 2013 19:58:46
%S 1,1,1,1,2,6,33,261,3125,54281,1360227,49213679,2551724168,
%T 189734190172,20202532257783,3077389342754387,670727373110373402,
%U 209089605110085626174,93228754516671937710239,59465333534426105454885059,54262238803939167296498684986
%N G.f.: A(x) = Sum_{n>=0} x^n * A(n*x) / A(x)^n.
%e G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 33*x^6 + 261*x^7 + 3125*x^8 +...
%e The table of coefficients of x^k in A(n*x)/A(x)^n begin:
%e n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
%e n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
%e n=2: [1, 0, 1, 2, 18, 128, 1704, 28908, 729461, 26121996, ...];
%e n=3: [1, 0, 3, 8, 102, 1032, 20052, 502104, 18852177, ...];
%e n=4: [1, 0, 6, 20, 333, 4404, 113292, 3769344, 188468286, ...];
%e n=5: [1, 0, 10, 40, 825, 13504, 433060, 17986560, 1123704270, ...];
%e n=6: [1, 0, 15, 70, 1725, 33684, 1294525, 64474290, ...];
%e n=7: [1, 0, 21, 112, 3213, 72912, 3266599, 189725472, ...];
%e n=8: [1, 0, 28, 168, 5502, 142296, 7282212, 483225336, ...];
%e n=9: [1, 0, 36, 240, 8838, 256608, 14768652, 1102246128, ...]; ...
%e This sequence equals the antidiagonal sums of the above table.
%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(k=0, n, x^k*subst(A,x,k*x +x*O(x^n))/A^(k)) );polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A125282.
%K nonn
%O 0,5
%A _Paul D. Hanna_, Jan 27 2013