

A138985


a(n) = Frobenius number for 5 successive numbers = F(n+1,n+2,n+3,n+4,n+5).


17



1, 2, 3, 4, 11, 13, 15, 17, 29, 32, 35, 38, 55, 59, 63, 67, 89, 94, 99, 104, 131, 137, 143, 149, 181, 188, 195, 202, 239, 247, 255, 263, 305, 314, 323, 332, 379, 389, 399, 409, 461, 472, 483, 494, 551, 563, 575, 587, 649, 662, 675, 688, 755, 769, 783, 797, 869
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For Frobenius numbers for 2 successive numbers see A028387
For Frobenius numbers for 3 successive numbers see A079326
For Frobenius numbers for 4 successive numbers see A138984
For Frobenius numbers for 5 successive numbers see A138985
For Frobenius numbers for 6 successive numbers see A138986
For Frobenius numbers for 7 successive numbers see A138987
For Frobenius numbers for 8 successive numbers see A138988


LINKS

Table of n, a(n) for n=1..57.
Index to sequences with linear recurrences with constant coefficients, signature (1,0,0,2,2,0,0,1,1).


FORMULA

G.f.: x*(x^85*x^4x^3x^2x1) / ((x1)^3*(x+1)^2*(x^2+1)^2). [Colin Barker, Dec 13 2012]


EXAMPLE

a(5)=11 because 11 is the biggest number k such that equation:
6*x_1+7*x_2+8*x_3+9*x_4+10*x_5 = k has no solution for any nonnegative x_i
(in other words for every k>11 there exists one or more solutions)


MATHEMATICA

Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}]


CROSSREFS

Cf. A028387, A079326, A138985, A138986, A138987, A138988.
Sequence in context: A181542 A160914 A155768 * A184806 A176541 A171376
Adjacent sequences: A138982 A138983 A138984 * A138986 A138987 A138988


KEYWORD

nonn,easy


AUTHOR

Artur Jasinski, Apr 05 2008


STATUS

approved



