login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138985 a(n) = Frobenius number for 5 successive numbers = F(n+1,n+2,n+3,n+4,n+5). 17
1, 2, 3, 4, 11, 13, 15, 17, 29, 32, 35, 38, 55, 59, 63, 67, 89, 94, 99, 104, 131, 137, 143, 149, 181, 188, 195, 202, 239, 247, 255, 263, 305, 314, 323, 332, 379, 389, 399, 409, 461, 472, 483, 494, 551, 563, 575, 587, 649, 662, 675, 688, 755, 769, 783, 797, 869 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).

FORMULA

G.f.: x*(x^8 - 5*x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012

EXAMPLE

a(5)=11 because 11 is the biggest number k such that the equation 6*x_1 + 7*x_2 + 8*x_3 + 9*x_4 + 10*x_5 = k has no solution for any nonnegative x_i (in other words, for every k>11, there exist one or more solutions).

MATHEMATICA

Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}]

Table[(Floor[(n-1)/4]+1)*(n+1)-1, {n, 57}] (* Zak Seidov, Jan 10 2015 *)

FrobeniusNumber/@Partition[Range[2, 70], 5, 1] (* or *) LinearRecurrence[ {1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 2, 3, 4, 11, 13, 15, 17, 29}, 70] (* Harvey P. Dale, Oct 07 2016 *)

PROG

(PARI)for (n=1, 57, print1((floor((n-1)/4)+1)*(n+1)-1 ", "))\\ Zak Seidov, Jan 10 2015

CROSSREFS

For Frobenius numbers for k successive numbers, see A028387 (k=2), A079326 (k=3), A138984 (k=4), this sequence (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Sequence in context: A181542 A160914 A155768 * A184806 A176541 A171376

Adjacent sequences:  A138982 A138983 A138984 * A138986 A138987 A138988

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Apr 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 21:40 EST 2016. Contains 278771 sequences.