login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138985 a(n) = Frobenius number for 5 successive numbers = F(n+1,n+2,n+3,n+4,n+5). 18
1, 2, 3, 4, 11, 13, 15, 17, 29, 32, 35, 38, 55, 59, 63, 67, 89, 94, 99, 104, 131, 137, 143, 149, 181, 188, 195, 202, 239, 247, 255, 263, 305, 314, 323, 332, 379, 389, 399, 409, 461, 472, 483, 494, 551, 563, 575, 587, 649, 662, 675, 688, 755, 769, 783, 797, 869 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).

FORMULA

G.f.: x*(x^8 - 5*x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012

EXAMPLE

a(5)=11 because 11 is the biggest number k such that the equation 6*x_1 + 7*x_2 + 8*x_3 + 9*x_4 + 10*x_5 = k has no solution for any nonnegative x_i (in other words, for every k>11, there exist one or more solutions).

MATHEMATICA

Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}]

Table[(Floor[(n-1)/4]+1)*(n+1)-1, {n, 57}] (* Zak Seidov, Jan 10 2015 *)

FrobeniusNumber/@Partition[Range[2, 70], 5, 1] (* or *) LinearRecurrence[ {1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 2, 3, 4, 11, 13, 15, 17, 29}, 70] (* Harvey P. Dale, Oct 07 2016 *)

PROG

(PARI)for (n=1, 57, print1((floor((n-1)/4)+1)*(n+1)-1 ", "))\\ Zak Seidov, Jan 10 2015

CROSSREFS

For Frobenius numbers for k successive numbers, see A028387 (k=2), A079326 (k=3), A138984 (k=4), this sequence (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Sequence in context: A160914 A326377 A155768 * A184806 A176541 A295721

Adjacent sequences:  A138982 A138983 A138984 * A138986 A138987 A138988

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Apr 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)