The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138985 a(n) = Frobenius number for 5 successive numbers = F(n+1, n+2, n+3, n+4, n+5). 20
 1, 2, 3, 4, 11, 13, 15, 17, 29, 32, 35, 38, 55, 59, 63, 67, 89, 94, 99, 104, 131, 137, 143, 149, 181, 188, 195, 202, 239, 247, 255, 263, 305, 314, 323, 332, 379, 389, 399, 409, 461, 472, 483, 494, 551, 563, 575, 587, 649, 662, 675, 688, 755, 769, 783, 797, 869 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1). FORMULA G.f.: x*(x^8 - 5*x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012 EXAMPLE a(5)=11 because 11 is the largest number k such that the equation 6*x_1 + 7*x_2 + 8*x_3 + 9*x_4 + 10*x_5 = k has no solution for any nonnegative x_i (in other words, for every k > 11 there exist one or more solutions). MATHEMATICA Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}] Table[(Floor[(n-1)/4]+1)*(n+1)-1, {n, 57}] (* Zak Seidov, Jan 10 2015 *) FrobeniusNumber/@Partition[Range[2, 70], 5, 1] (* or *) LinearRecurrence[ {1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 2, 3, 4, 11, 13, 15, 17, 29}, 70] (* Harvey P. Dale, Oct 07 2016 *) PROG (PARI)for (n=1, 57, print1((floor((n-1)/4)+1)*(n+1)-1 ", "))\\ Zak Seidov, Jan 10 2015 CROSSREFS Frobenius number for k successive numbers: A028387 (k=2), A079326 (k=3), A138984 (k=4), this sequence (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8). Sequence in context: A160914 A326377 A155768 * A184806 A176541 A295721 Adjacent sequences: A138982 A138983 A138984 * A138986 A138987 A138988 KEYWORD nonn,easy AUTHOR Artur Jasinski, Apr 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 15:36 EST 2023. Contains 367693 sequences. (Running on oeis4.)