login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138985 a(n) = Frobenius number for 5 successive numbers = F(n+1,n+2,n+3,n+4,n+5). 16
1, 2, 3, 4, 11, 13, 15, 17, 29, 32, 35, 38, 55, 59, 63, 67, 89, 94, 99, 104, 131, 137, 143, 149, 181, 188, 195, 202, 239, 247, 255, 263, 305, 314, 323, 332, 379, 389, 399, 409, 461, 472, 483, 494, 551, 563, 575, 587, 649, 662, 675, 688, 755, 769, 783, 797, 869 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..57.

Index to sequences with linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).

FORMULA

G.f.: x*(x^8 - 5*x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012

EXAMPLE

a(5)=11 because 11 is the biggest number k such that the equation 6*x_1 + 7*x_2 + 8*x_3 + 9*x_4 + 10*x_5 = k has no solution for any nonnegative x_i (in other words, for every k>11, there exist one or more solutions).

MATHEMATICA

Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}]

Table[(Floor[(n-1)/4]+1)*(n+1)-1, {n, 57}] (* Zak Seidov, Jan 10 2015 *)

PROG

(PARI)for (n=1, 57, print1((floor((n-1)/4)+1)*(n+1)-1 ", "))\\ Zak Seidov, Jan 10 2015

CROSSREFS

For Frobenius numbers for k successive numbers, see A028387 (k=2), A079326 (k=3), A138984 (k=4), this sequence (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Sequence in context: A181542 A160914 A155768 * A184806 A176541 A171376

Adjacent sequences:  A138982 A138983 A138984 * A138986 A138987 A138988

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Apr 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 25 07:27 EDT 2015. Contains 257806 sequences.