login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138985 a(n) = Frobenius number for 5 successive numbers = F(n+1, n+2, n+3, n+4, n+5). 20
1, 2, 3, 4, 11, 13, 15, 17, 29, 32, 35, 38, 55, 59, 63, 67, 89, 94, 99, 104, 131, 137, 143, 149, 181, 188, 195, 202, 239, 247, 255, 263, 305, 314, 323, 332, 379, 389, 399, 409, 461, 472, 483, 494, 551, 563, 575, 587, 649, 662, 675, 688, 755, 769, 783, 797, 869 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
G.f.: x*(x^8 - 5*x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012
EXAMPLE
a(5)=11 because 11 is the largest number k such that the equation 6*x_1 + 7*x_2 + 8*x_3 + 9*x_4 + 10*x_5 = k has no solution for any nonnegative x_i (in other words, for every k > 11 there exist one or more solutions).
MATHEMATICA
Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4}], {n, 1, 100}]
Table[(Floor[(n-1)/4]+1)*(n+1)-1, {n, 57}] (* Zak Seidov, Jan 10 2015 *)
FrobeniusNumber/@Partition[Range[2, 70], 5, 1] (* or *) LinearRecurrence[ {1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 2, 3, 4, 11, 13, 15, 17, 29}, 70] (* Harvey P. Dale, Oct 07 2016 *)
PROG
(PARI)for (n=1, 57, print1((floor((n-1)/4)+1)*(n+1)-1 ", "))\\ Zak Seidov, Jan 10 2015
CROSSREFS
Frobenius number for k successive numbers: A028387 (k=2), A079326 (k=3), A138984 (k=4), this sequence (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).
Sequence in context: A160914 A326377 A155768 * A184806 A176541 A295721
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Apr 05 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 15:36 EST 2023. Contains 367693 sequences. (Running on oeis4.)