login
A138987
a(n) = Frobenius number for 7 successive numbers = F(n+1, n+2, n+3, n+4, n+5, n+6, n+7).
19
1, 2, 3, 4, 5, 6, 15, 17, 19, 21, 23, 25, 41, 44, 47, 50, 53, 56, 79, 83, 87, 91, 95, 99, 129, 134, 139, 144, 149, 154, 191, 197, 203, 209, 215, 221, 265, 272, 279, 286, 293, 300, 351, 359, 367, 375, 383, 391, 449, 458, 467, 476, 485, 494, 559, 569, 579, 589, 599
OFFSET
1,2
LINKS
FORMULA
G.f.: x*(x^12-7*x^6-x^5-x^4-x^3-x^2-x-1) / ((x-1)^3*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). [Colin Barker, Dec 13 2012]
EXAMPLE
a(7) = 15 because 15 is the largest number k such that the equation 8*x_1 + 9*x_2 + 10*x_3 + 11*x_4 + 12*x_5 + 13*x_6 + 14*x_7 = k has no solution for any nonnegative x_i (in other words, for every k > 15 there exist one or more solutions).
MATHEMATICA
Table[FrobeniusNumber[{n+1, n+2, n+3, n+4, n+5, n+6, n+7}], {n, 1, 100}]
Table[FrobeniusNumber[n+Range[7]], {n, 100}] (* Harvey P. Dale, Dec 06 2021 *)
CROSSREFS
Frobenius number for k successive numbers: A028387 (k=2), A079326 (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), this sequence (k=7), A138988 (k=8).
Sequence in context: A325805 A350190 A039061 * A318534 A265405 A171610
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Apr 05 2008
STATUS
approved