login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138988
a(n) is the Frobenius number for 8 successive numbers n+1, n+2, ..., n+8.
18
1, 2, 3, 4, 5, 6, 7, 17, 19, 21, 23, 25, 27, 29, 47, 50, 53, 56, 59, 62, 65, 91, 95, 99, 103, 107, 111, 115, 149, 154, 159, 164, 169, 174, 179, 221, 227, 233, 239, 245, 251, 257, 307, 314, 321, 328, 335, 342, 349, 407, 415, 423, 431, 439, 447, 455, 521, 530, 539
OFFSET
1,2
FORMULA
G.f.: x*(x^14 - 8*x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)^2). - Colin Barker, Dec 13 2012
EXAMPLE
a(8)=17 because 17 is the largest number k such that equation:
9*x_1 + 10*x_2 + 11*x_3 + 12*x_4 + 13*x_5 + 14*x_6 + 15*x_7 + 16*x_8 = k has no solution for any nonnegative x_i (in other words, for every k > 17 there exist one or more solutions).
MATHEMATICA
Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8}], {n, 1, 100}]
Table[FrobeniusNumber[n+Range[8]], {n, 100}] (* Harvey P. Dale, Sep 22 2015 *)
CROSSREFS
Frobenius number for k successive numbers: A028387 (k=2), A079326 (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), this sequence (k=8).
Sequence in context: A325829 A171678 A039090 * A055520 A037342 A200333
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Apr 05 2008
STATUS
approved