|
|
A138988
|
|
a(n) is the Frobenius number for 8 successive numbers n+1, n+2, ..., n+8.
|
|
18
|
|
|
1, 2, 3, 4, 5, 6, 7, 17, 19, 21, 23, 25, 27, 29, 47, 50, 53, 56, 59, 62, 65, 91, 95, 99, 103, 107, 111, 115, 149, 154, 159, 164, 169, 174, 179, 221, 227, 233, 239, 245, 251, 257, 307, 314, 321, 328, 335, 342, 349, 407, 415, 423, 431, 439, 447, 455, 521, 530, 539
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,2,-2,0,0,0,0,0,-1,1).
|
|
FORMULA
|
G.f.: x*(x^14 - 8*x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1) / ((x-1)^3*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)^2). - Colin Barker, Dec 13 2012
|
|
EXAMPLE
|
a(8)=17 because 17 is the largest number k such that equation:
9*x_1 + 10*x_2 + 11*x_3 + 12*x_4 + 13*x_5 + 14*x_6 + 15*x_7 + 16*x_8 = k has no solution for any nonnegative x_i (in other words, for every k > 17 there exist one or more solutions).
|
|
MATHEMATICA
|
Table[FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8}], {n, 1, 100}]
Table[FrobeniusNumber[n+Range[8]], {n, 100}] (* Harvey P. Dale, Sep 22 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|