login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138991 a(n) = Frobenius number for 5 successive primes = F[p(n),p(n+1),p(n+2),p(n+3),p(n+4)]. 11
1, 4, 9, 23, 31, 54, 66, 101, 125, 143, 200, 261, 285, 307, 398, 434, 588, 563, 672, 708, 659, 717, 935, 1078, 1748, 1816, 1135, 1173, 1104, 1277, 1911, 1975, 2188, 2111, 2680, 2593, 2683, 3266, 2861, 3297, 3757, 3996, 4198, 3275, 2953, 3457, 4668, 6688 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For Frobenius numbers for 2 successive primes see A037165

For Frobenius numbers for 3 successive primes see A138989

For Frobenius numbers for 4 successive primes see A138990

For Frobenius numbers for 5 successive primes see A138991

For Frobenius numbers for 6 successive primes see A138992

For Frobenius numbers for 7 successive primes see A138993

For Frobenius numbers for 8 successive primes see A138994

LINKS

Table of n, a(n) for n=1..48.

EXAMPLE

a(3)=23 because 23 is the biggest number k such that equation:

7*x_1+11*x_2+13*x_3+17*x+4+19*x_5 = k has no solution for any nonnegative x_i (in other words for every k>23 there exists one or more solutions)

MATHEMATICA

Table[FrobeniusNumber[{Prime[n], Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4]}], {n, 1, 100}]

FrobeniusNumber/@Partition[Prime[Range[80]], 5, 1] (* Harvey P. Dale, Aug 15 2014 *)

CROSSREFS

Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993, A138994.

Sequence in context: A257272 A070713 A060250 * A138990 A014543 A131607

Adjacent sequences:  A138988 A138989 A138990 * A138992 A138993 A138994

KEYWORD

nonn

AUTHOR

Artur Jasinski, Apr 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 16:08 EST 2019. Contains 329241 sequences. (Running on oeis4.)