%I
%S 1,4,9,23,31,54,66,101,125,143,200,261,285,307,398,434,588,563,672,
%T 708,659,717,935,1078,1748,1816,1135,1173,1104,1277,1911,1975,2188,
%U 2111,2680,2593,2683,3266,2861,3297,3757,3996,4198,3275,2953,3457,4668,6688
%N a(n) = Frobenius number for 5 successive primes = F[p(n),p(n+1),p(n+2),p(n+3),p(n+4)].
%C For Frobenius numbers for 2 successive primes see A037165
%C For Frobenius numbers for 3 successive primes see A138989
%C For Frobenius numbers for 4 successive primes see A138990
%C For Frobenius numbers for 5 successive primes see A138991
%C For Frobenius numbers for 6 successive primes see A138992
%C For Frobenius numbers for 7 successive primes see A138993
%C For Frobenius numbers for 8 successive primes see A138994
%e a(3)=23 because 23 is the biggest number k such that equation:
%e 7*x_1+11*x_2+13*x_3+17*x+4+19*x_5 = k has no solution for any nonnegative x_i (in other words for every k>23 there exists one or more solutions)
%t Table[FrobeniusNumber[{Prime[n],Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4]}], {n, 1, 100}]
%t FrobeniusNumber/@Partition[Prime[Range[80]],5,1] (* _Harvey P. Dale_, Aug 15 2014 *)
%Y Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993, A138994.
%K nonn
%O 1,2
%A _Artur Jasinski_, Apr 05 2008
