The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138993 a(n) = Frobenius number for 7 successive primes = F[p(n),p(n+1),p(n+2),p(n+3),p(n+4),p(n+5),p(n+6)]. 11
 1, 4, 9, 16, 27, 41, 49, 63, 102, 114, 169, 187, 203, 221, 304, 328, 409, 441, 465, 495, 525, 559, 769, 811, 867, 907, 826, 854, 886, 938, 1403, 1451, 1505, 1555, 1786, 1838, 1741, 2125, 2193, 2605, 2325, 2005, 2479, 2318, 2362, 2637, 3402, 4012, 3857, 3666 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For Frobenius numbers for 2 successive primes see A037165 For Frobenius numbers for 3 successive primes see A138989 For Frobenius numbers for 4 successive primes see A138990 For Frobenius numbers for 5 successive primes see A138991 For Frobenius numbers for 6 successive primes see A138992 For Frobenius numbers for 7 successive primes see A138993 For Frobenius numbers for 8 successive primes see A138994 LINKS EXAMPLE a(4)=16 because 16 is the biggest number k such that equation: 7*x_1+11*x_2+13*x_3+17*x+4+19*x_5+23*x_6 +29*x_7= k has no solution for any nonnegative x_i (in other words for every k>16 there exists one or more solutions) MATHEMATICA Table[FrobeniusNumber[{Prime[n], Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4], Prime[n + 5], Prime[n + 6]}], {n, 1, 100}] FrobeniusNumber/@Partition[Prime[Range[100]], 7, 1] (* Harvey P. Dale, Aug 15 2014 *) CROSSREFS Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993, A138994. Sequence in context: A109593 A237589 A138981 * A339330 A008019 A029896 Adjacent sequences: A138990 A138991 A138992 * A138994 A138995 A138996 KEYWORD nonn AUTHOR Artur Jasinski, Apr 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 21:57 EST 2022. Contains 358453 sequences. (Running on oeis4.)