OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
H. C. Williams and C. R. Zarnke, Computation of the solutions of the Diophantine equation x^3+dy^3=1, Proc. Conf. Numerical Maths., Winnipeg (1971), 671-676.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..135
István Gaál, László Remete, Solving binomial Thue equations, arXiv:1810.01819 [math.NT], 2018. See 4.1 Solutions for n = 3 p. 6.
H. C. Williams and C. R. Zarnke, Computation of the solutions of the Diophantine equation x^3+dy^3=1, Proc. Conf. Numerical Maths., Winnipeg (1971), 671-676. (Annotated scanned copy)
H. C. Williams and R. Holte, Computation of the solution of x^3 + D y^3 = 1, Mathematics of Computation, Vol. 31, No. 139. (Jul., 1977), pp. 778-785.
MATHEMATICA
m = 400; s = {}; Do[If[x*y < 0, r = Reduce[ n > 0 && x^3 + n*y^3 == 1, n, Integers]; If[r =!= False, AppendTo[s, n /. ToRules[r]]]], {x, -m, m}, {y, -m, m}]; Union[s] [[1 ;; 38]] (* Jean-François Alcover, Jun 08 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Nov 17 2016
STATUS
approved