login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259453
The y value of the unique nontrivial solution to x^3 + d*y^3 = 1 for all admissible (d = 2,7,9,17,..., A005988).
3
1, -1, 1, -7, 3, 7, -1, 1, -3, 2, -1, 1, -2, -1, 1, 3, -1, 1, -3, -1, 1, 2, -1, 1, -2, -42, 3, -1, 1, -3, -1, 1, -1, 1, 2, 3, 6, -1, 1, -6, -3, -2, -1, 1, -1, 1, 3, -1, 1, -3, 2, 4, -1, 1, -4, -2, -1, 1, -21, 3, -1, 1, -3, -1, 1, 2, -1, 1, -2, 3
OFFSET
1,4
REFERENCES
H. C. Williams and C. R. Zarnke, Computation of the solutions of the Diophantine equation x^3+dy^3=1, Proc. Conf. Numerical Maths., Winnipeg (1971), 671-676.
LINKS
H. C. Williams and C. R. Zarnke, Computation of the solutions of the Diophantine equation x^3+dy^3=1, Proc. Conf. Numerical Maths., Winnipeg (1971), 671-676. (Annotated scanned copy)
H. C. Williams and R. Holte, Computation of the solution of x^3 + D y^3 = 1, Mathematics of Computation, Vol. 31, No. 139. (Jul., 1977), pp. 778-785.
CROSSREFS
Cf. A005988, A055735 (x values).
Sequence in context: A253891 A309612 A021856 * A096715 A242939 A242938
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 28 2015
EXTENSIONS
More terms from Sean A. Irvine, Nov 17 2016
STATUS
approved