login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The y value of the unique nontrivial solution to x^3 + d*y^3 = 1 for all admissible (d = 2,7,9,17,..., A005988).
3

%I #17 Oct 16 2017 20:19:59

%S 1,-1,1,-7,3,7,-1,1,-3,2,-1,1,-2,-1,1,3,-1,1,-3,-1,1,2,-1,1,-2,-42,3,

%T -1,1,-3,-1,1,-1,1,2,3,6,-1,1,-6,-3,-2,-1,1,-1,1,3,-1,1,-3,2,4,-1,1,

%U -4,-2,-1,1,-21,3,-1,1,-3,-1,1,2,-1,1,-2,3

%N The y value of the unique nontrivial solution to x^3 + d*y^3 = 1 for all admissible (d = 2,7,9,17,..., A005988).

%D H. C. Williams and C. R. Zarnke, Computation of the solutions of the Diophantine equation x^3+dy^3=1, Proc. Conf. Numerical Maths., Winnipeg (1971), 671-676.

%H Sean A. Irvine, <a href="/A259453/b259453.txt">Table of n, a(n) for n = 1..135</a>

%H H. C. Williams and C. R. Zarnke, <a href="/A005988/a005988.pdf">Computation of the solutions of the Diophantine equation x^3+dy^3=1</a>, Proc. Conf. Numerical Maths., Winnipeg (1971), 671-676. (Annotated scanned copy)

%H H. C. Williams and R. Holte, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0434946-0">Computation of the solution of x^3 + D y^3 = 1</a>, Mathematics of Computation, Vol. 31, No. 139. (Jul., 1977), pp. 778-785.

%Y Cf. A005988, A055735 (x values).

%K sign

%O 1,4

%A _N. J. A. Sloane_, Jun 28 2015

%E More terms from _Sean A. Irvine_, Nov 17 2016