

A105638


Maximum number of intersections in selfintersecting ngon.


4



0, 1, 5, 7, 14, 17, 27, 31, 44, 49, 65, 71, 90, 97, 119, 127, 152, 161, 189, 199, 230, 241, 275, 287, 324, 337, 377, 391, 434, 449, 495, 511, 560, 577, 629, 647, 702, 721, 779, 799, 860, 881, 945, 967, 1034, 1057, 1127, 1151, 1224, 1249, 1325, 1351, 1430, 1457
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,3


COMMENTS

Quasipolynomial of order 2. [Charles R Greathouse IV, Mar 29 2012]


REFERENCES

B. Grünbaum, Selfintersections of Polygons, Geombinatorics, Volume VIII 4 (1998), pp. 3745.


LINKS

David W. Wilson, Table of n, a(n) for n = 3..10000
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
Index entries for linear recurrences with constant coefficients, signature (1,2,2,1,1).


FORMULA

a(n) = n(n3)/2 if n odd, n(n4)/2+1 if n even.
a(n) = a(n1) + 2a(n2)  2a(n3)  a(n4) + a(n5).
G.f.: x^4*(1+4*xx^3)/((1+x)^2*(1x)^3). [Colin Barker, Jan 31 2012]


EXAMPLE

The selfintersecting pentagon with the largest number of intersections is the star polygon {5/2} (pentacle}, with 5 intersections, hence a(5) = 5.


MATHEMATICA

LinearRecurrence[{1, 2, 2, 1, 1}, {0, 1, 5, 7, 14}, 54] (* or *)
DeleteCases[CoefficientList[Series[x^4*(1 + 4 x  x^3)/((1 + x)^2*(1  x)^3), {x, 0, 56}], x], 0] (* Michael De Vlieger, Jul 10 2020 *)


PROG

(PARI) a(n)=if(n%2, n*(n3)/2, n*(n4)/2+1) \\ Charles R Greathouse IV, Mar 29 2012


CROSSREFS

Sequence in context: A249149 A301686 A314343 * A294379 A314344 A314345
Adjacent sequences: A105635 A105636 A105637 * A105639 A105640 A105641


KEYWORD

nonn,easy


AUTHOR

David W. Wilson, Apr 16 2005


STATUS

approved



