The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105638 Maximum number of intersections in self-intersecting n-gon. 4
 0, 1, 5, 7, 14, 17, 27, 31, 44, 49, 65, 71, 90, 97, 119, 127, 152, 161, 189, 199, 230, 241, 275, 287, 324, 337, 377, 391, 434, 449, 495, 511, 560, 577, 629, 647, 702, 721, 779, 799, 860, 881, 945, 967, 1034, 1057, 1127, 1151, 1224, 1249, 1325, 1351, 1430, 1457 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,3 COMMENTS Quasipolynomial of order 2. [Charles R Greathouse IV, Mar 29 2012] REFERENCES B. Grünbaum, Selfintersections of Polygons, Geombinatorics, Volume VIII 4 (1998), pp. 37-45. LINKS David W. Wilson, Table of n, a(n) for n = 3..10000 F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020. Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = n(n-3)/2 if n odd, n(n-4)/2+1 if n even. a(n) = a(n-1) + 2a(n-2) - 2a(n-3) - a(n-4) + a(n-5). G.f.: x^4*(1+4*x-x^3)/((1+x)^2*(1-x)^3). [Colin Barker, Jan 31 2012] EXAMPLE The self-intersecting pentagon with the largest number of intersections is the star polygon {5/2} (pentacle}, with 5 intersections, hence a(5) = 5. MATHEMATICA LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 5, 7, 14}, 54] (* or *) DeleteCases[CoefficientList[Series[x^4*(1 + 4 x - x^3)/((1 + x)^2*(1 - x)^3), {x, 0, 56}], x], 0] (* Michael De Vlieger, Jul 10 2020 *) PROG (PARI) a(n)=if(n%2, n*(n-3)/2, n*(n-4)/2+1) \\ Charles R Greathouse IV, Mar 29 2012 CROSSREFS Sequence in context: A249149 A301686 A314343 * A294379 A314344 A314345 Adjacent sequences:  A105635 A105636 A105637 * A105639 A105640 A105641 KEYWORD nonn,easy AUTHOR David W. Wilson, Apr 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 15:16 EST 2020. Contains 338927 sequences. (Running on oeis4.)