login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093353
a(n) = (n + (n mod 2))*(n + 1)/2.
18
0, 2, 3, 8, 10, 18, 21, 32, 36, 50, 55, 72, 78, 98, 105, 128, 136, 162, 171, 200, 210, 242, 253, 288, 300, 338, 351, 392, 406, 450, 465, 512, 528, 578, 595, 648, 666, 722, 741, 800, 820, 882, 903, 968, 990, 1058, 1081, 1152, 1176, 1250, 1275, 1352, 1378, 1458
OFFSET
0,2
COMMENTS
Partial sums of A014682. - Paul Barry, Mar 31 2008
a(n) is the sum of all parts in the integer partitions of n+1 into two parts, see example. - Wesley Ivan Hurt, Jan 26 2013
Also the independence number of the n X n torus grid graph. - Eric W. Weisstein, Sep 06 2017
Also the number of circles we can draw on vertices of an (n+1)-sided regular polygon (using only a compass). - Matej Veselovac, Jan 21 2020
REFERENCES
W. R. Hare, S. T. Hedetniemi, R. Laskar, and J. Pfaff, Complete coloring parameters of graphs, Proceedings of the sixteenth Southeastern international conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1985). Congr. Numer., Vol. 48 (1985), pp. 171-178. MR0830709 (87h:05088). See s_m on page 135. - N. J. A. Sloane, Apr 06 2012
LINKS
Eric Weisstein's World of Mathematics, Independence Number.
Eric Weisstein's World of Mathematics, Torus Grid Graph.
FORMULA
a(2*n) = a(2*n-1) + n = A014105(n).
a(2*n+1) = a(2*n) + 3*n + 2 = A001105(n+1).
G.f.: x*(2+x+x^2)/((1-x)^3*(1+x)^2).
a(n) = (n+1)*(2*n+1-(-1)^n)/4. - Paul Barry, Mar 31 2008
a(n) = (n+1)*floor((n+1)/2). - Wesley Ivan Hurt, Jan 26 2013
a(n) = Sum_{i=1..floor((n+1)/2)} i + Sum_{i=ceiling((n+1)/2)..n} i. - Wesley Ivan Hurt, Jun 08 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/12 + 2*(1-log(2)) = A072691 + A188859.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - 2*(1-log(2)) = A072691 - A188859. (End)
E.g.f.: (x*(3 + x)*cosh(x) + (1 + x)^2*sinh(x))/2. - Stefano Spezia, Nov 13 2024
EXAMPLE
a(1) = 2 since 2 = (1+1) and the sum of the first and second parts in the partition is 2; a(2) = 3 since 3 = (1+2) and the sum of these parts is 3; a(3) = 8 since 4 = (1+3) = (2+2) and the sum of all the parts is 8. - Wesley Ivan Hurt, Jan 26 2013
MAPLE
a:= n-> (n+1)*floor((n+1)/2); seq(a(n), n = 0..70);
MATHEMATICA
(* Contributions from Harvey P. Dale, Nov 15 2013: Start *)
Table[(n+Mod[n, 2])*(n+1)/2, {n, 0, 60}]
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 2, 3, 8, 10}, 60]
Join[{0}, Module[{nn = 60, ab}, ab = Transpose[ Partition[ Accumulate[ Range[nn]], 2]]; Flatten[ Transpose[ {ab[[1]] + Range[nn/2], ab[[2]]}]]]]
(* End *)
PROG
(PARI) a(n)=(n+1)\2*(n+1) \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [(n+1)*(2*n+1-(-1)^n)/4: n in [0..60]]; // Vincenzo Librandi, Jan 23 2020
(SageMath) [(n+1)*int((n+1)//2) for n in range(0, 71)] # G. C. Greubel, Mar 14 2024
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Apr 27 2004
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Nov 13 2024
STATUS
approved