login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326714
a(n) = binomial(n,2) + (2-adic valuation of n).
1
0, 2, 3, 8, 10, 16, 21, 31, 36, 46, 55, 68, 78, 92, 105, 124, 136, 154, 171, 192, 210, 232, 253, 279, 300, 326, 351, 380, 406, 436, 465, 501, 528, 562, 595, 632, 666, 704, 741, 783, 820, 862, 903, 948, 990, 1036, 1081, 1132, 1176, 1226, 1275, 1328, 1378
OFFSET
1,2
COMMENTS
2^a(n) is the smallest integer m >= n such that binomial(m,n) is divisible by 2^binomial(n,2).
2^a(n) is conjectured to be the order of the smallest n-symmetric graph.
LINKS
Sebastian Jeon, Tanya Khovanova, 3-Symmetric Graphs, arXiv:2003.03870 [math.CO], 2020.
FORMULA
a(n) = A007814(n) + A161680(n).
EXAMPLE
Binomial(4,2) is 6. In addition, the 2-adic value of 4 is 2, so a(4) = 8.
MATHEMATICA
a[n_] := Binomial[n, 2] + IntegerExponent[n, 2]; Array[a, 60] (* Giovanni Resta, Dec 03 2019 *)
PROG
(Python)
for i in range(1, 70):
j = i
res = i*(i-1)//2
while j%2 == 0:
res = res + 1
j = j // 2
print(str(res), end = ', ')
(Python)
def A326714(n): return (n*(n-1)>>1)+(~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Sebastian Jeon and Tanya Khovanova, Dec 02 2019
STATUS
approved