OFFSET
1,2
COMMENTS
2^a(n) is the smallest integer m >= n such that binomial(m,n) is divisible by 2^binomial(n,2).
2^a(n) is conjectured to be the order of the smallest n-symmetric graph.
LINKS
Sebastian Jeon, Tanya Khovanova, 3-Symmetric Graphs, arXiv:2003.03870 [math.CO], 2020.
EXAMPLE
Binomial(4,2) is 6. In addition, the 2-adic value of 4 is 2, so a(4) = 8.
MATHEMATICA
a[n_] := Binomial[n, 2] + IntegerExponent[n, 2]; Array[a, 60] (* Giovanni Resta, Dec 03 2019 *)
PROG
(Python)
for i in range(1, 70):
j = i
res = i*(i-1)//2
while j%2 == 0:
res = res + 1
j = j // 2
print(str(res), end = ', ')
(Python)
def A326714(n): return (n*(n-1)>>1)+(~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Sebastian Jeon and Tanya Khovanova, Dec 02 2019
STATUS
approved