login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n,2) + (2-adic valuation of n).
1

%I #76 Jul 01 2022 15:17:38

%S 0,2,3,8,10,16,21,31,36,46,55,68,78,92,105,124,136,154,171,192,210,

%T 232,253,279,300,326,351,380,406,436,465,501,528,562,595,632,666,704,

%U 741,783,820,862,903,948,990,1036,1081,1132,1176,1226,1275,1328,1378

%N a(n) = binomial(n,2) + (2-adic valuation of n).

%C 2^a(n) is the smallest integer m >= n such that binomial(m,n) is divisible by 2^binomial(n,2).

%C 2^a(n) is conjectured to be the order of the smallest n-symmetric graph.

%H Sebastian Jeon, Tanya Khovanova, <a href="https://arxiv.org/abs/2003.03870">3-Symmetric Graphs</a>, arXiv:2003.03870 [math.CO], 2020.

%F a(n) = A007814(n) + A161680(n).

%e Binomial(4,2) is 6. In addition, the 2-adic value of 4 is 2, so a(4) = 8.

%t a[n_] := Binomial[n, 2] + IntegerExponent[n, 2]; Array[a, 60] (* _Giovanni Resta_, Dec 03 2019 *)

%o (Python)

%o for i in range(1, 70):

%o j = i

%o res = i*(i-1)//2

%o while j%2 == 0:

%o res = res + 1

%o j = j // 2

%o print(str(res), end = ', ')

%o (Python)

%o def A326714(n): return (n*(n-1)>>1)+(~n & n-1).bit_length() # _Chai Wah Wu_, Jul 01 2022

%Y Cf. A007814, A161680, A329952.

%K nonn

%O 1,2

%A Sebastian Jeon and _Tanya Khovanova_, Dec 02 2019